1
|
Liu X, Wen J, Liu X, Chen A, Li S, Liu J, Sun J, Gong W, Kang X, Feng Z, He C, Mei L, Ling J, Feng Y. Gene regulation analysis of patient-derived iPSCs and its CRISPR-corrected control provides a new tool for studying perturbations of ELMOD3 c.512A>G mutation during the development of inherited hearing loss. PLoS One 2023; 18:e0288640. [PMID: 37708136 PMCID: PMC10501637 DOI: 10.1371/journal.pone.0288640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/30/2023] [Indexed: 09/16/2023] Open
Abstract
The ELMOD3 gene is implicated in causing autosomal recessive/dominant non-syndromic hearing loss in humans. However, the etiology has yet to be completely elucidated. In this study, we generated a patient-derived iPSC line carrying ELMOD3 c.512A>G mutation. In addition, the patient-derived iPSC line was corrected by CRISPR/Cas9 genome editing system. Then we applied RNA sequencing profiling to compare the patient-derived iPSC line with different controls, respectively (the healthy sibling-derived iPSCs and the CRISPR/Cas9 corrected iPSCs). Functional enrichment and PPI network analysis revealed that differentially expressed genes (DEGs) were enriched in the gene ontology, such as sensory epithelial development, intermediate filament cytoskeleton organization, and the regulation of ion transmembrane transport. Our current work provided a new tool for studying how disruption of ELMOD3 mechanistically drives hearing loss.
Collapse
Affiliation(s)
- Xianlin Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Wen
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Anhai Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Sijun Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jing Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Sun
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Futian District, Shenzhen, China
| | - Wei Gong
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Xiaoming Kang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Zhili Feng
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Otolaryngology Major Disease Research of Hunan Province, Changsha, Hunan, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, University of South China, Changsha, Hunan, China
| |
Collapse
|
2
|
Mohamed WKE, Arnoux M, Cardoso THS, Almutery A, Tlili A. Mitochondrial mutations in non-syndromic hearing loss at UAE. Int J Pediatr Otorhinolaryngol 2020; 138:110286. [PMID: 32871514 DOI: 10.1016/j.ijporl.2020.110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Hearing loss (HL) is a common sensory disorder over the world, and it has been estimated that genetic etiology is involved in more than 50% of the cases in developed countries. Both nuclear and mitochondrial genes were reported as responsible for hereditary HL. Mitochondrial mutations leading to HL have so far been reported in the MT-RNR1 gene, mitochondrially encoded 12S rRNA. METHODS To study the molecular contribution of mitochondrial 12S rRNA gene mutations in UAE-HL, a cohort of 74 unrelated UAE patients with no gap junction protein beta 2 (GJB2) mutations were selected for mitochondrial 12S rRNA gene mutational screening using Sanger sequencing and whole-exome sequencing. Detected DNA variants were analyzed by bioinformatics tools to predict their pathogenic effects. RESULTS Our analysis revealed the presence of two known deafness mutations; m.669T > C and m.827A > G in two different deaf individuals. Furthermore, whole-exome sequencing was done for these two patients and showed the absence of any nuclear mutations. Our study supports the pathogenic effect of the m.669T > C and m.827A > G mutations and showed that mitochondrial mutations have a contribution of 2.7% in our cohort. CONCLUSIONS This is the first report of mtDNA mutations in the UAE which revealed that both variants m.669T > C and m.827A > G should be included in the molecular diagnosis of patients with maternally inherited HL in UAE.
Collapse
Affiliation(s)
- Walaa Kamal Eldin Mohamed
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Departament de Genètica I de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Arnoux
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Thyago H S Cardoso
- Departamento de Bioquímica, Universidade Federal De Sao Paulo, Sao Paulo, Brazil
| | - Abdullah Almutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
3
|
Flexible Real-Time Polymerase Chain Reaction-Based Platforms for Detecting Deafness Mutations in Koreans: A Proposed Guideline for the Etiologic Diagnosis of Auditory Neuropathy Spectrum Disorder. Diagnostics (Basel) 2020; 10:diagnostics10090672. [PMID: 32899707 PMCID: PMC7554951 DOI: 10.3390/diagnostics10090672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/23/2023] Open
Abstract
Routine application of next-generation sequencing in clinical settings is often limited by time- and cost-prohibitive complex filtering steps. Despite the previously introduced genotyping kit that allows screening of the 11 major recurring variants of sensorineural hearing loss (SNHL) genes in the Korean population, the demand for phenotype- and variant-specific screening kits still remains. Herein, we developed a new real-time PCR-based kit (U-TOP™ HL Genotyping Kit Ver2), comprising six variants from two auditory neuropathy spectrum disorder (ANSD) genes (OTOF and ATP1A3) and five variants from three SNHL genes (MPZL2, COCH, and TMC1), with a distinct auditory phenotype, making this the first genotyping kit dedicated to ANSD. The concordance rate with Sanger sequencing, sensitivity, and specificity of this genotyping kit were all 100%, suggesting reliability. The kit not only allows timely and cost-effective identification of recurring OTOF variants, but it also allows timely detection of cochlear nerve deficiency for those without OTOF variants. Herein, we provide a clinical guideline for an efficient, rapid, and cost-effective etiologic diagnosis of prelingual ANSD. Our study provides a good example of continuing to update new key genetic variants, which will continuously be revealed through NGS, as targets for the newly developed genotyping kit.
Collapse
|
4
|
Mohamed WKE, Mahfood M, Al Mutery A, Abdallah SH, Tlili A. A Novel Nonsense Mutation (c.414G>A; p.Trp138*) in CLDN14 Causes Hearing Loss in Yemeni Families: A Case Report. Front Genet 2019; 10:1087. [PMID: 31781163 PMCID: PMC6856671 DOI: 10.3389/fgene.2019.01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 12/01/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is a hereditary disorder that affects many populations. Many genes are involved in NSHL and the mutational load of these genes often differs among ethnic groups. Claudin-14 (CLDN14), a tight junction protein, is known to be associated with NSHL in many populations. In this study, we aimed to identify the responsible variants in 3 different Yemeni families affected with NSHL. Firstly, clinical exome sequencing (CES) performed for 3 affected patients from these different families identified a new nonsense variant (c.414G > A) in CLDN14. This variant was then confirmed by Sanger sequencing and PCR-RFLP. Subsequently, four microsatellite markers were used to genotype these families, which revealed a founder effect for this variant. Overall, this study illustrates the implication of the CLDN14 gene in the Yemeni population with NSHL and identifies a new founder variant.
Collapse
Affiliation(s)
- Walaa Kamal Eldin Mohamed
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Yue X, Sheng Y, Kang L, Xiao R. Distinct functions of TMC channels: a comparative overview. Cell Mol Life Sci 2019; 76:4221-4232. [PMID: 31584127 PMCID: PMC11105308 DOI: 10.1007/s00018-019-03214-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
In the past two decades, transmembrane channel-like (TMC) proteins have attracted a significant amount of research interest, because mutations of Tmc1 lead to hereditary deafness. As evolutionarily conserved membrane proteins, TMC proteins are widely involved in diverse sensorimotor functions of many species, such as hearing, chemosensation, egg laying, and food texture detection. Interestingly, recent structural and physiological studies suggest that TMC channels may share a similar membrane topology with the Ca2+-activated Cl- channel TMEM16 and the mechanically activated OSCA1.2/TMEM63 channel. Namely, these channels form dimers and each subunit consists of ten transmembrane segments. Despite this important structural insight, a key question remains: what is the gating mechanism of TMC channels? The major technical hurdle to answer this question is that the reconstitution of TMC proteins as functional ion channels has been challenging in mammalian heterologous systems. Since TMC channels are conserved across taxa, genetic studies of TMC channels in model organisms such as C. elegans, Drosophila, and zebrafish may provide us critical information on the physiological function and regulation of TMCs. Here, we present a comparative overview on the diverse functions of TMC channels in different species.
Collapse
Affiliation(s)
- Xiaomin Yue
- Department of Neurosurgery of the First Affiliated Hospital, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sheng
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Lijun Kang
- Department of Neurosurgery of the First Affiliated Hospital, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Rui Xiao
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA.
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Comprehensive genetic testing of Chinese SNHL patients and variants interpretation using ACMG guidelines and ethnically matched normal controls. Eur J Hum Genet 2019; 28:231-243. [PMID: 31541171 PMCID: PMC6974605 DOI: 10.1038/s41431-019-0510-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Hereditary hearing loss is a monogenic disease with high genetic heterogeneity. Variants in more than 100 deafness genes underlie the basis of its pathogenesis. The aim of this study was to assess the ratio of SNVs in known deafness genes contributing to the etiology of both sporadic and familial sensorineural hearing loss patients from China. DNA samples from 1127 individuals, including normal hearing controls (n = 616), sporadic SNHL patients (n = 433), and deaf individuals (n = 78) from 30 hearing loss pedigrees were collected. The NGS tests included analysis of sequence alterations in 129 genes. The variants were interpreted according to the ACMG/AMP guidelines for genetic hearing loss combined with NGS data from 616 ethnically matched normal hearing adult controls. We identified a positive molecular diagnosis in 226 patients with sporadic SNHL (52.19%) and in patients from 17 deafness pedigrees (56.67%). Ethnically matched MAF filtering reduced the variants of unknown significance by 8.7%, from 6216 to 5675. Some complexities that may restrict causative variant identification are discussed. This report highlight the clinical utility of NGS panels identifying disease-causing variants for the diagnosis of hearing loss and underlines the importance of a broad data of control and ACMG/AMP standards for accurate clinical delineation of VUS variants.
Collapse
|
7
|
Hereditary hearing loss; about the known and the unknown. Hear Res 2019; 376:58-68. [PMID: 30665849 DOI: 10.1016/j.heares.2019.01.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023]
Abstract
Hereditary hearing loss is both clinically and genetically very heterogeneous. Despite the large number of genes that have been associated with the condition, many cases remain unexplained. Novel gene associations with hearing loss are to be expected but also are defects of regulatory regions of the genome which are currently not routinely addressed in molecular genetic testing and research. Inheritance patterns other than monogenic might be more common than assumed in isolated cases and diagnoses might have been missed because of misinterpretation of identified DNA variants. This review summarizes current insights in the genetics of hearing loss, the next steps that are being taken in research, and their challenges. Furthermore, genotype-phenotype correlations and modifying factors are discussed as these are instrumental in counselling hearing impaired individuals and/or their family members.
Collapse
|
8
|
Li W, Sun J, Ling J, Li J, He C, Liu Y, Chen H, Men M, Niu Z, Deng Y, Li M, Li T, Wen J, Sang S, Li H, Wan Z, Richard EM, Chapagain P, Yan D, Liu XZ, Mei L, Feng Y. ELMOD3, a novel causative gene, associated with human autosomal dominant nonsyndromic and progressive hearing loss. Hum Genet 2018; 137:329-342. [PMID: 29713870 DOI: 10.1007/s00439-018-1885-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 11/26/2022]
Abstract
Autosomal dominant nonsyndromic hearing loss (ADNSHL) is a highly genetically heterogeneous disorder. Up to date only approximately 37 ADNSHL-causing genes have been identified. The goal of this study was to determine the causative gene in a five-generation Chinese family with ADNSHL. A Chinese family was ascertained. Simultaneously, two affected individuals and one normal hearing control from the family were analyzed by whole exome capture sequencing. To assess the functional effect of the identified variant, in-vitro studies were performed. novel missense variant, c.512A>G (p.His171Arg) in exon 8 of the ELMO domain-containing 3 (ELMOD3) gene, was identified as a causative variant in this family affected by late-onset and progressive ADNSHL. The variant was validated by Sanger sequencing and found to co-segregate with the phenotype within the pedigree and was absent in 500 ethnically matched unrelated normal hearing control subjects. To our knowledge, this is the first report of a family with ADNSHL caused by ELMOD3 mutation. Western blots and immunofluorescence staining demonstrated that p.His171Arg resulted in abnormal expression levels of ELMOD3 and abnormal subcellular localization. Furthermore, the analysis of the stability of the wild-type (WT) and mutant ELMOD3 protein shows that the decay of p.His171Arg is faster than that of the WT, suggesting a shorter halflife of the c.512A > G variant. A novel variant in the ELMOD3 gene, encoding a member of the engulfment and cell motility (ELMO) family of GTPase-activating proteins, was identified for the first time as responsible for ADNSHL.
Collapse
Affiliation(s)
- Wu Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Jie Sun
- Department of Otolaryngology, The Eight Affiliated Hospital, Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, Guangdong, China
| | - Jie Ling
- Institute of Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Jiada Li
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Chufeng He
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yalan Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Hongsheng Chen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meichao Men
- Health Management Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhijie Niu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yuyuan Deng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Meng Li
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Taoxi Li
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Jie Wen
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Shushan Sang
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Zhengqing Wan
- Center for Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan, China
- School of Life Sciences, Central South University of China, 110 Xiangya Road, Changsha, Hunan, China
| | - Elodie M Richard
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
| | - Xue Zhong Liu
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lingyun Mei
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.
- Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wang H, Wu K, Guan J, Yang J, Xie L, Xiong F, Lan L, Wang D, Wang Q. Identification of four TMC1 variations in different Chinese families with hereditary hearing loss. Mol Genet Genomic Med 2018; 6:504-513. [PMID: 29654653 PMCID: PMC6081220 DOI: 10.1002/mgg3.394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Variants in TMC1 (transmembrane channel-like 1) can cause both autosomal dominant and recessive hearing loss in human population. Mice with Tmc1 variants have been shown to be ideal animal models for gene therapy. In this article, we report four TMC1 variants in four different Chinese families and the follow-up auditory phenotype of a previously reported family. METHODS Four families with TMC1 variants, as well as a previously described family with TMC1 variant orthologous to the Beethoven mouse, were recruited in this study. A comprehensive auditory evaluation was performed on all ascertained family members. High-throughput sequencing was conducted using genomic DNA from the probands and other family members to identify probable deafness genes. RESULTS We identified four TMC1 (NM_138691.2) variations, including two pathogenic variants, c.1714G>A, and c.1253T>A, one likely pathogenic variant, c.[797T>C];[797T>C], and one single nucleotide polymorphism (SNP), c.2276G>A. Among these variants, c.[797T>C];[797T>C] is a novel likely pathogenic variant, and c.1714G>A and c.1253T>A are known pathogenic variants at the DFNB7/11 (DFNA36) locus. Phenotype-genotype correlation analysis of TMC1 variants showed that the TMC1 dominant variation-related phenotype was late-onset, progressive, high frequency to all frequency sensorineural hearing loss, while the TMC1 recessive variant was related to congenital all frequency sensorineural hearing impairment. CONCLUSIONS Two pathogenic, one likely pathogenic variants and one SNP of TMC1 were identified in four Chinese families with hereditary hearing loss, indicating that TMC1 may be a more frequent cause of hearing loss than expected. TMC1 variants related to hearing loss result in specific phenotypes. The TMC1 c.1253T>A (p.M418K) variation, homologous to the Tmc1 c. 1235 T> A (p.M412K) variant in Beethoven mice, was the second report of this variant in human patients with hearing loss, suggesting the possibility to translational gene therapy from Beethoven mice to human patients.
Collapse
Affiliation(s)
- Hongyang Wang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Kaiwen Wu
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Jing Guan
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Ju Yang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Linyi Xie
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Fen Xiong
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Lan Lan
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Dayong Wang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| | - Qiuju Wang
- Institute of OtolaryngologyChinese PLA General HospitalMedical School of Chinese PLABeijingChina
| |
Collapse
|
10
|
A Missense Mutation in POU4F3 Causes Midfrequency Hearing Loss in a Chinese ADNSHL Family. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5370802. [PMID: 29850532 PMCID: PMC5904794 DOI: 10.1155/2018/5370802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/05/2018] [Indexed: 11/18/2022]
Abstract
Hereditary nonsyndromic hearing loss is extremely heterogeneous. Mutations in the POU class 4 transcription factor 3 (POU4F3) are known to cause autosomal dominant nonsyndromic hearing loss linked to the loci of DFNA15. In this study, we describe a pathogenic missense mutation in POU4F3 in a four-generation Chinese family (6126) with midfrequency, progressive, and postlingual autosomal dominant nonsyndromic hearing loss (ADNSHL). By combining targeted capture of 129 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified POU4F3 c.602T>C (p.Leu201Pro) as the disease-causing variant. This variant cosegregated with hearing loss in other family members but was not detected in 580 normal controls or the ExAC database and could be classified as a “pathogenic variant” according to the American College of Medical Genetics and Genomics guidelines. We conclude that POU4F3 c.602T>C (p.Leu201Pro) is related to midfrequency hearing loss in this family. Routine examination of POU4F3 is necessary for the genetic diagnosis of midfrequency hearing loss.
Collapse
|
11
|
Jiang Y, Gao S, Wu L, Jin X, Deng T, Wang L, Huang S, Gao X, Chen J, Han D, Gao H, Dai P. Mutation spectra and founder effect of TMC1 in patients with non-syndromic deafness in Xiamen area, China. Am J Med Genet B Neuropsychiatr Genet 2018; 177. [PMID: 29533536 PMCID: PMC5888129 DOI: 10.1002/ajmg.b.32603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To analyze the spectrum and founder effect of TMC1 mutations in patients with non-syndromic deafness in the Xiamen area. Sporadic pedigrees were detected by targeted next-generation sequencing, and 110 unrelated patients from Xiamen Special Education School were analyzed through Sanger sequencing for the TMC1 gene. In total, 53 SNPs were designed to analyze the haplotypes of the TMC1 c.2050G>C mutation. The probands of three families were found to be homozygous for TMC1 c.2050G>C, and their parents were all heterozygous for the TMC1 c.2050G>C mutation. In 110 unrelated patients from Xiamen Special Education School, four were found to carry compound heterozygotes of TMC1 c.2050G>C, which were compound heterozygotes of c.804G>A, c.1127T>C, c.1165C>T, and c.1396_1398delAAC, respectively. Three types of TMC1 polymorphisms (c.45C>T, c.1713C>T, c.2208+49C>T) and two heterozygotes of novel variants (c.1764-4C>A, c.2073G>A[p.K691K]) were found in the remaining 100 patients. In total, four novel variants were detected in this study. These mutations and variants were not detected in 100 normal samples. The haplotypes of the probands of families with TMC1 c.2050G>C were identical. There were unique hotspots and spectra of TMC1 mutations in the Xiamen deaf population. Haplotype analysis is useful to understand the founder effect of the hot spot mutation.
Collapse
Affiliation(s)
- Yi Jiang
- Department of OtolaryngologyHead and Neck SurgeryPLA General HospitalBeijingP. R. China,Department of OtolaryngologyFujian Medical University ShengLi Clinical CollegeFujian Provincial HospitalFuzhouP.R. China
| | - Song Gao
- Department of OtolaryngologyHead and Neck SurgeryPLA General HospitalBeijingP. R. China,Department of OtolaryngologyThe 175th Hospital of PLASouth‐East Hospital Affiliated to Xiamen UniversityZhangzhouP. R. China
| | - Lihua Wu
- Department of OtolaryngologyFujian Medical University ShengLi Clinical CollegeFujian Provincial HospitalFuzhouP.R. China
| | - Xiaohua Jin
- National Research Institute for Family PlanningBeijingP. R. China,National Human Genetic Resources CenterBeijingP. R. China
| | - Tao Deng
- Beijing Capital Bio Independent Clinical LaboratoryBeijingP. R. China
| | - Ligang Wang
- Beijing Capital Bio Independent Clinical LaboratoryBeijingP. R. China
| | - Shasha Huang
- Department of OtolaryngologyHead and Neck SurgeryPLA General HospitalBeijingP. R. China
| | - Xue Gao
- Department of OtolaryngologyPLA Rocket Force General HospitalBeijingP. R. China
| | - Juan Chen
- Department of OtolaryngologyFujian Medical University ShengLi Clinical CollegeFujian Provincial HospitalFuzhouP.R. China
| | - Dongyi Han
- Department of OtolaryngologyHead and Neck SurgeryPLA General HospitalBeijingP. R. China
| | - Huafang Gao
- National Research Institute for Family PlanningBeijingP. R. China,National Human Genetic Resources CenterBeijingP. R. China
| | - Pu Dai
- Department of OtolaryngologyHead and Neck SurgeryPLA General HospitalBeijingP. R. China
| |
Collapse
|
12
|
The Application of Next-Generation Sequencing for Mutation Detection in Autosomal-Dominant Hereditary Hearing Impairment. Otol Neurotol 2017; 38:900-903. [PMID: 28419064 DOI: 10.1097/mao.0000000000001432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. PATIENTS Two Swiss families with autosomal-dominant hereditary hearing impairment. INTERVENTION Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. MAIN OUTCOME MEASURE Mutation detection in hearing-loss-related genes. RESULTS The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. CONCLUSION Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.
Collapse
|