1
|
Kannan S, Bodurtha JN, Hamosh A, Jordan C. Monochorionic twins with 15q26.3 duplication presenting with selective intrauterine growth restriction and discordant cardiac anomalies: A case report. Mol Genet Genomic Med 2022; 10:e1947. [PMID: 35795918 PMCID: PMC9356548 DOI: 10.1002/mgg3.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Duplication of the distal end of chromosome 15q has been previously implicated in a characteristic overgrowth syndrome. Additionally, many patients have other congenital malformations, including cardiac, renal, genital, and musculoskeletal anomalies. However, some patients may present with intrauterine growth restriction and short stature. Different breakpoints within 15q, as well as different environmental factors, may underlie these varied presentations. CASE PRESENTATION We discuss monochorionic-diamniotic twins with a ~345 kb maternally inherited duplication in 15q26.3. The twins presented with discordant pathology-one twin with a single umbilical artery, selective intrauterine growth restriction, and multiple cardiac defects including aortic coarctation, aortic valve stenosis, and ventricular septal defect, whereas the other twin was unaffected. To our knowledge, this case represents the smallest reported duplication of distal 15q. CONCLUSION The discordant phenotype seen in the twins is likely due to a complex interplay between genetic and environmental causes. The affected infant presented prenatally with growth restriction and a single umbilical artery rather than overgrowth, potentially due to a unique breakpoint within 15q. This, in turn, may have produced hemodynamic perturbations between the twins, leading to discordant cardiac disease. Our report thus highlights the importance of genetic and nongenetic mechanisms underlying discordant anomalies in monochorionic twins.
Collapse
Affiliation(s)
- Suraj Kannan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joann N Bodurtha
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ada Hamosh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Jordan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Glessner JT, Chang X, Liu Y, Li J, Khan M, Wei Z, Sleiman PMA, Hakonarson H. MONTAGE: a new tool for high-throughput detection of mosaic copy number variation. BMC Genomics 2021; 22:133. [PMID: 33627065 PMCID: PMC7905641 DOI: 10.1186/s12864-021-07395-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/19/2021] [Indexed: 01/21/2023] Open
Abstract
Background Not all cells in a given individual are identical in their genomic makeup. Mosaicism describes such a phenomenon where a mixture of genotypic states in certain genomic segments exists within the same individual. Mosaicism is a prevalent and impactful class of non-integer state copy number variation (CNV). Mosaicism implies that certain cell types or subset of cells contain a CNV in a segment of the genome while other cells in the same individual do not. Several studies have investigated the impact of mosaicism in single patients or small cohorts but no comprehensive scan of mosaic CNVs has been undertaken to accurately detect such variants and interpret their impact on human health and disease. Results We developed a tool called Montage to improve the accuracy of detection of mosaic copy number variants in a high throughput fashion. Montage directly interfaces with ParseCNV2 algorithm to establish disease phenotype genome-wide association and determine which genomic ranges had more or less than expected frequency of mosaic events. We screened for mosaic events in over 350,000 samples using 1% allele frequency as the detection limit. Additionally, we uncovered disease associations of multiple phenotypes with mosaic CNVs at several genomic loci. We additionally investigated the allele imbalance observations genome-wide to define non-diploid and non-integer copy number states. Conclusions Our novel algorithm presents an efficient tool with fast computational runtime and high levels of accuracy of mosaic CNV detection. A curated mosaic CNV callset of 3716 events in 2269 samples is presented with comparability to previous reports and disease phenotype associations. The new algorithm can be freely accessed via: https://github.com/CAG-CNV/MONTAGE. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07395-7.
Collapse
Affiliation(s)
- Joseph T Glessner
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Xiao Chang
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Yichuan Liu
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jin Li
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Munir Khan
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Zhi Wei
- New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Patrick M A Sleiman
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Department of Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Burada F, Streata I, Ungureanu A, Ruican D, Nagy R, Serban-Sosoi S, Stambouli D, Dimos L, Popescu-Hobeanu G, Mihai I, Iliescu D. Prenatal diagnosis of a pure 15q distal trisomy derived from a maternal pericentric inversion: A case report. Exp Ther Med 2021; 21:304. [PMID: 33717247 PMCID: PMC7885063 DOI: 10.3892/etm.2021.9735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
Distal trisomy or duplication of 15q is a very rare chromosomal disorder; most of the previously reported cases were derived from unbalanced translocations involving chromosome 15 and another chromosome, whereas other mechanisms (e.g. duplication) have rarely been reported. We herein report a very rare prenatal case of a partial 15q trisomy, a 42.64-Mb duplication of 15q22.2-q26.3, arising from a maternal pericentric inversion of chromosome 15 (p11q22) that was not the result of an unbalanced translocation or duplication, and was not associated with concomitant partial monosomy. Fetal ultrasound revealed isolated thickened nuchal translucency at 12 weeks and multiple abnormalities in the second trimester, including early growth restriction, unilateral ventriculomegaly, narrow cavum septi pellucidi with hypoplasia of the corpus callosum, unilateral postaxial polydactyly, clenched hands and clubfoot with clawing of the toes, and a particular general dysplastic and hypotrophic aspect of the heart. The distinctive aspects of the present case may help to refine the phenotype associated with distal duplication 15q. To the best of our knowledge, this is the first report of a prenatal diagnosis with a 15q22.2-q26.3 duplication that did not result from an unbalanced translocation and did not have a concomitant monosomic component.
Collapse
Affiliation(s)
- Florin Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.,Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.,Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Anda Ungureanu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.,Department of Pediatric Cardiology, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Dan Ruican
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Rodica Nagy
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simona Serban-Sosoi
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.,Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | | | - Luiza Dimos
- Cytogenomic Medical Laboratory, 014453 Bucharest, Romania
| | - Gabriela Popescu-Hobeanu
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ioana Mihai
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.,Regional Center of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Dominic Iliescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
4
|
Cannarella R, Mattina T, Condorelli RA, Mongioì LM, Pandini G, La Vignera S, Calogero AE. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function. Endocr Connect 2017; 6:528-539. [PMID: 28899882 PMCID: PMC5597972 DOI: 10.1530/ec-17-0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R), mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05). Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15) (p10q26.2) karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Giuseppe Pandini
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| |
Collapse
|