1
|
Sun J, Yang N, Xu Z, Cheng H, Zhang X. A novel heterozygous mutation in PTHLH causing autosomal dominant brachydactyly type E complicated with short stature. Mol Genet Genomic Med 2024; 12:e2393. [PMID: 38407575 PMCID: PMC10844838 DOI: 10.1002/mgg3.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Brachydactyly type E (BDE) is a general term characterized by variable shortening of metacarpals and metatarsals, with phalanges affected frequently. It can occur as an isolated form or part of syndromes and manifest a high degree of phenotypic variability. In this study, we have identified the clinical characteristics and pathogenic causes of a four-generation pedigree with 10 members affected by BDE and short stature. METHODS After the informed consent was signed, clinical data and peripheral blood samples were collected from available family members. Karyotype analysis, array-CGH, next-generation sequencing, and Sanger sequencing were employed to identity the pathogenic candidate gene. RESULTS No translocation or microdeletion/duplication was found in karyotype analysis and array-CGH; hence, a novel heterozygous mutation, c.146dupA. p.S50Vfs*22, was detected by next-generation sequencing in PTHLH gene, leading to a premature stop codon. Subsequently, the mutation was confirmed by Sanger sequencing and co-segregation analysis. CONCLUSION In this study, we described a novel heterozygous mutation (c.146dupA. p.S50Vfs*22) of gene PTHLH in a Chinese family. The mutation could induce a premature stop codon leading to a truncation of the protein. Our study broadened the mutation spectrum of PTHLH in BDE.
Collapse
Affiliation(s)
- Jian Sun
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Nian Yang
- Department of PediatricsLinShu People's HospitalLinyiChina
| | - Zhengquan Xu
- Department of Orthopaedics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Hongbo Cheng
- Center for Reproduction and Genetics, NHC Key Laboratory of Male Reproduction and Genetics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Xiangxin Zhang
- Department of Orthopaedics, Suzhou Municipal HospitalThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| |
Collapse
|
2
|
Scheffer-Rath ME, Veenstra-Knol HE, Boot AM. A novel mutation in PTHLH in a family with a variable phenotype with brachydactyly, short stature, oligodontia and developmental delay. Bone Rep 2023; 19:101699. [PMID: 37501674 PMCID: PMC10368755 DOI: 10.1016/j.bonr.2023.101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Mutations in PTHLH (PTH-like hormone), cause brachydactyly type E (BDE) characterized by shortening of metacarpals, metatarsals and/or phalanges with short stature. In this report we describe three siblings and their mother with a novel heterozygous mutation c.25 T > C, p.Trp9Arg in exon 2 of the PTHLH gene. Beside the known clinical features of PTHLH mutations all had a delay in speech and language development, unknown if this is related to the mutation. Patients with PTHLH mutation may have a variable phenotypic presentation.
Collapse
Affiliation(s)
- Mirjam E.A. Scheffer-Rath
- Department of Pediatric Endocrinology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Hermine E. Veenstra-Knol
- Department of Genetics, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Annemieke M. Boot
- Department of Pediatric Endocrinology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
3
|
Shao J, Liu Y, Zhao S, Sun W, Zhan J, Cao L. A novel variant in the ROR2 gene underlying brachydactyly type B: a case report. BMC Pediatr 2022; 22:528. [PMID: 36064339 PMCID: PMC9446770 DOI: 10.1186/s12887-022-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Brachydactyly type B is an autosomal dominant disorder that is characterized by hypoplasia of the distal phalanges and nails and can be divided into brachydactyly type B1 (BDB1) and brachydactyly type B2 (BDB2). BDB1 is the most severe form of brachydactyly and is caused by truncating variants in the receptor tyrosine kinase–like orphan receptor 2 (ROR2) gene. Case presentation Here, we report a five-generation Chinese family with brachydactyly with or without syndactyly. The proband and her mother underwent digital separation in syndactyly, and the genetic analyses of the proband and her parents were provided. The novel heterozygous frameshift variant c.1320dupG, p.(Arg441Alafs*18) in the ROR2 gene was identified in the affected individuals by whole-exome sequencing and Sanger sequencing. The c.1320dupG variant in ROR2 is predicted to produce a truncated protein that lacks tyrosine kinase and serine/threonine- and proline-rich structures and remarkably alters the tertiary structures of the mutant ROR2 protein. Conclusion The c.1320dupG, p.(Arg441Alafs*18) variant in the ROR2 gene has not been reported in any databases thus far and therefore is novel. Our study extends the gene variant spectrum of brachydactyly and may provide information for the genetic counselling of family members. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03564-z.
Collapse
Affiliation(s)
- Jiaqi Shao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yue Liu
- Hand SurgeryCentral Hospital Affiliated to Shenyang Medical CollegeTiexi District, Dept.4No. 5 Nanqi West Road, Shenyang, 110024, China
| | - Shuyang Zhao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Weisheng Sun
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Jie Zhan
- Hand SurgeryCentral Hospital Affiliated to Shenyang Medical CollegeTiexi District, Dept.4No. 5 Nanqi West Road, Shenyang, 110024, China.
| | - Lihua Cao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China.
| |
Collapse
|
4
|
Abstract
Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) regulate extracellular phosphate and calcium homeostasis as well as bone remodeling. PTH is a classic endocrine peptide hormone whose synthesis and negative feedback by multiple factors control release from the parathyroid glands. PTHrP is ubiquitously expressed (pre- and postnatally) and acts in an autocrine/paracrine manner. This review considers the structural pharmacology and actions of PTH and PTHrP, biological consequences of inherited mutations, engineered analogs that illuminate similarities and differences in physiologic actions, and targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas Veterinary Medical Center 4466 Texas A&M University, College Station, TX, United States
| | - Peter A Friedman
- Department of Pharmacology and Chemical Biology, Laboratory for GPCR Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
5
|
Elli FM, Mattinzoli D, Lucca C, Piu M, Maffini MA, Costanza J, Fontana L, Santaniello C, Forino C, Milani D, Bonati MT, Secco A, Gastaldi R, Alfieri C, Messa P, Miozzo M, Arosio M, Mantovani G. Novel Pathogenetic Variants in PTHLH and TRPS1 Genes Causing Syndromic Brachydactyly. J Bone Miner Res 2022; 37:465-474. [PMID: 34897794 PMCID: PMC9305952 DOI: 10.1002/jbmr.4490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
Skeletal disorders, including both isolated and syndromic brachydactyly type E, derive from genetic defects affecting the fine tuning of the network of pathways involved in skeletogenesis and growth-plate development. Alterations of different genes of this network may result in overlapping phenotypes, as exemplified by disorders due to the impairment of the parathyroid hormone/parathyroid hormone-related protein pathway, and obtaining a correct diagnosis is sometimes challenging without a genetic confirmation. Five patients with Albright's hereditary osteodystrophy (AHO)-like skeletal malformations without a clear clinical diagnosis were analyzed by whole-exome sequencing (WES) and novel potentially pathogenic variants in parathyroid hormone like hormone (PTHLH) (BDE with short stature [BDE2]) and TRPS1 (tricho-rhino-phalangeal syndrome [TRPS]) were discovered. The pathogenic impact of these variants was confirmed by in vitro functional studies. This study expands the spectrum of genetic defects associated with BDE2 and TRPS and demonstrates the pathogenicity of TRPS1 missense variants located outside both the nuclear localization signal and the GATA ((A/T)GATA(A/G)-binding zinc-containing domain) and Ikaros-like binding domains. Unfortunately, we could not find distinctive phenotypic features that might have led to an earlier clinical diagnosis, further highlighting the high degree of overlap among skeletal syndromes associated with brachydactyly and AHO-like features, and the need for a close interdisciplinary workout in these rare patients. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Camilla Lucca
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Piu
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria A Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jole Costanza
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | - Laura Fontana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | - Carlo Santaniello
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | | | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unità di Pediatria Alta Intensità di Cura, Milan, Italy
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andrea Secco
- SC Pediatria e DEA Pediatrico, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | - Carlo Alfieri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Dialysis and Renal Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Dialysis and Renal Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Miozzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOS Coordinamento Laboratori di Ricerca, Direzione Scientifica, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Tacke CE, Terheggen-Lagro SWJ, Boot AM, Plomp AS, Polstra AM, van Rijn RR, Struijs PAA, van den Berg H, Mooij CF. Chondrodysplasia, enchondromas and a chest deformity causing severe pulmonary morbidity in a boy with a PTHLH duplication: A case report. Bone Rep 2021; 14:101067. [PMID: 33981811 PMCID: PMC8085669 DOI: 10.1016/j.bonr.2021.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 10/26/2022] Open
Abstract
Parathyroid hormone-like hormone (PTHLH) plays an important role in bone formation. Several skeletal dysplasias have been described that are associated with disruption of PTHLH functioning. Here we report on a new patient with a 898 Kb duplication on chromosome 12p11.22 including the PTHLH gene. The boy has multiple skeletal abnormalities including chondrodysplasia, lesions radiographically resembling enchondromas and posterior rib deformities leading to a severe chest deformity. Severe pulmonary symptoms were thought to be caused by limited mobility and secondary sputum evacuation problems due to the chest deformity. Imaging studies during follow-up revealed progression of the number of skeletal lesions over time. This case extends the phenotypic spectrum associated with copy number variation of PTHLH.
Collapse
Affiliation(s)
- Carline E Tacke
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Suzanne W J Terheggen-Lagro
- Department of Pediatric Pulmonology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemieke M Boot
- Department of Pediatric Endocrinology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Abeltje M Polstra
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rick R van Rijn
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter A A Struijs
- Department of Orthopedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Christiaan F Mooij
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Reyes M, Silve C, Jüppner H. Shortened Fingers and Toes: GNAS Abnormalities are Not the Only Cause. Exp Clin Endocrinol Diabetes 2020; 128:681-686. [PMID: 31860119 PMCID: PMC7950720 DOI: 10.1055/a-1047-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The PTH/PTHrP receptor (PTHR1) mediates the actions of parathyroid hormone (PTH) and PTH-related peptide (PTHrP) by coupling this G protein-coupled receptor (GPCR) to the alpha-subunit of the heterotrimeric stimulatory G protein (Gsα) and thereby to the formation of cAMP. In growth plates, PTHrP-dependent activation of the cAMP/PKA second messenger pathway prevents the premature differentiation of chondrocytes into hypertrophic cells resulting in delayed growth plate closure. Heterozygous mutations in GNAS, the gene encoding Gsα, lead to a reduction in cAMP levels in growth plate chondrocytes that is sufficient to cause shortening of metacarpals and/or -tarsals, i. e. typical skeletal aspects of Albright's Hereditary Osteodystrophy (AHO). However, heterozygous mutations in other genes, including those encoding PTHrP, PRKAR1A, PDE4D, and PDE3A, can lead to similar or even more pronounced acceleration of skeletal maturation that is particularly obvious in hands and feet, and reduces final adult height. Genetic mutations other than those resulting in Gsα haploinsufficiency thus reduce intracellular cAMP levels in growth plate chondrocytes to a similar extent and thereby accelerate skeletal maturation.
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline Silve
- INSERM équipe “Génomiques et épigénétique des tumeurs rares”, Institut Cochin, Paris, France
- Centre de Référence des Maladies rares du Calcium et du Phosphore and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France
- Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, AP- HP, Paris, France
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, MassGeneral Hospital for Children Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Role of Signal Transduction Pathways and Transcription Factors in Cartilage and Joint Diseases. Int J Mol Sci 2020; 21:ijms21041340. [PMID: 32079226 PMCID: PMC7072930 DOI: 10.3390/ijms21041340] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis and rheumatoid arthritis are common cartilage and joint diseases that globally affect more than 200 million and 20 million people, respectively. Several transcription factors have been implicated in the onset and progression of osteoarthritis, including Runx2, C/EBPβ, HIF2α, Sox4, and Sox11. Interleukin-1 β (IL-1β) leads to osteoarthritis through NF-ĸB, IκBζ, and the Zn2+-ZIP8-MTF1 axis. IL-1, IL-6, and tumor necrosis factor α (TNFα) play a major pathological role in rheumatoid arthritis through NF-ĸB and JAK/STAT pathways. Indeed, inhibitory reagents for IL-1, IL-6, and TNFα provide clinical benefits for rheumatoid arthritis patients. Several growth factors, such as bone morphogenetic protein (BMP), fibroblast growth factor (FGF), parathyroid hormone-related protein (PTHrP), and Indian hedgehog, play roles in regulating chondrocyte proliferation and differentiation. Disruption and excess of these signaling pathways cause genetic disorders in cartilage and skeletal tissues. Fibrodysplasia ossificans progressive, an autosomal genetic disorder characterized by ectopic ossification, is induced by mutant ACVR1. Mechanistic target of rapamycin kinase (mTOR) inhibitors can prevent ectopic ossification induced by ACVR1 mutations. C-type natriuretic peptide is currently the most promising therapy for achondroplasia and related autosomal genetic diseases that manifest severe dwarfism. In these ways, investigation of cartilage and chondrocyte diseases at molecular and cellular levels has enlightened the development of effective therapies. Thus, identification of signaling pathways and transcription factors implicated in these diseases is important.
Collapse
|
9
|
Guan J, Yin L, Wang H, Chen G, Zhao C, Wang D, Wang QJ. Novel de novo interstitial deletion in 2q36.1q36.3 causes syndromic hearing loss and further delineation of the 2q36 deletion syndrome. Acta Otolaryngol 2019; 139:870-875. [PMID: 31403828 DOI: 10.1080/00016489.2019.1592219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Deletions of the interstitial 2q36 are uncommon and associated with varying phenotypes. However, the list of currently known phenotypes is still far complete for an understanding of the interstitial 2q36 deletion syndrome characteristics. Aims/Objectives: To identify the genetic and clinical characterization of a 6-year-old male patient suffering from a severe form of syndromic hearing loss, with brachydactyly family history. Material and Methods: We performed conventional cytogenetic analysis on the peripheral blood lymphocytes and whole exome sequencing and SNP array analysis on DNA samples from the family. Results: The proband showed signs such as bilateral sensorineural deafness, ocular hypertelorism, flat facial profile and several decayed teeth, slightly ulnar deviation of the hands, single transverse palmar crease, short stature and intellectual disability. Through cytogenetic and molecular genetic analysis, we discovered that the syndromic hearing loss was the result of a de novo 5.175-Mb microdeletion at chromosome 2q36.1q36.3 whose breakpoints had been precisely mapped by us. Conclusions and Significance: Our study warns that auditory assessment should be evaluated even if the patient with 2q36 deletion syndrome is not obviously presenting hearing loss. In addition, a comprehensive molecular genetics diagnosis involving multiple methods is important to support accurate genetic characterization of this syndrome.
Collapse
Affiliation(s)
- Jing Guan
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Linwei Yin
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Hongyang Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Guohui Chen
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Cui Zhao
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Dayong Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qiu-Ju Wang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
10
|
A 3.06-Mb interstitial deletion on 12p11.22-12.1 caused brachydactyly type E combined with pectus carinatum. Chin Med J (Engl) 2019; 132:1681-1688. [PMID: 31283647 PMCID: PMC6759105 DOI: 10.1097/cm9.0000000000000327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Brachydactyly, a developmental disorder, refers to shortening of hands/feet due to small or missing metacarpals/metatarsals and/or phalanges. Isolated brachydactyly type E (BDE), characterized by shortened metacarpals and/or metatarsals, consists in a small proportion of patients with Homeobox D13 (HOXD13) or parathyroid-hormone-like hormone (PTHLH) mutations. BDE is often accompanied by other anomalies that are parts of many congenital syndromes. In this study, we investigated a Chinese family presented with BDE combined with pectus carinatum and short stature. METHODS A four-generation Chinese family was recruited in June 2016. After informed consent was obtained, venous blood was collected, and genomic DNA was extracted by standard procedures. Whole-exome sequencing was performed to screen pathogenic mutation, array comparative genomic hybridization (Array-CGH) analysis was used to analyze copy number variations, and quantitative real-time polymerase chain reaction (PCR), stride over breakpoint PCR (gap-PCR), and Sanger sequencing were performed to confirm the candidate variation. RESULTS A 3.06-Mb deletion (chr12:25473650-28536747) was identified and segregated with the phenotype in this family. The deletion region encompasses 23 annotated genes, one of which is PTHLH which has been reported to be causative to the BDE. PTHLH is an important regulator of endochondral bone development. The affected individuals showed bilateral, severe, and generalized brachydactyly with short stature, pectus carinatum, and prematurely fusion of epiphyses. The feature of pectus carinatum has not been described in the PTHLH-related BDE patients previously. CONCLUSIONS The haploinsufficiency of PTHLH might be responsible for the disease in this family. This study has expanded the knowledge on the phenotypic presentation of PTHLH variation.
Collapse
|
11
|
Reyes M, Bravenboer B, Jüppner H. A Heterozygous Splice-Site Mutation in PTHLH Causes Autosomal Dominant Shortening of Metacarpals and Metatarsals. J Bone Miner Res 2019; 34:482-489. [PMID: 30458061 PMCID: PMC6637419 DOI: 10.1002/jbmr.3628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 12/30/2022]
Abstract
Short metacarpals and/or metatarsals are typically observed in pseudohypoparathyroidism (PHP) type Ia (PHP1A) or pseudo-PHP (PPHP), disorders caused by inactivating GNAS mutations involving exons encoding the alpha-subunit of the stimulatory G protein (Gsα). Skeletal abnormalities similar to those in PHP1A/PPHP were present in several members of an extended Belgian family without evidence for abnormal calcium and phosphate regulation. Direct nucleotide sequencing of genomic DNA from an affected individual (190/III-1) excluded GNAS mutations. Instead, whole exome analysis revealed a novel heterozygous A>G change at nucleotide -3 upstream of PTHLH exon 3 that encodes the last two amino acids of the prosequence and the mature PTHrP. The same nucleotide change was also found in her affected mother and maternal aunt (190/II-2, 190/II-1), and her affected twin sons (190/IV-1, 190/IV-2), but not in her unaffected daughter (190/IV-3) and sister (190/III-2). Complementary DNA derived from immortalized lymphoblastoid cells from 190/IV-2 (affected) and 190/IV-3 (unaffected) was PCR-amplified using forward primers located either in PTHLH exon 1 (noncoding) or exon 2 (presequence and most of the prosequence), and reverse primers located in the 3'-noncoding regions of exons 3 or 4. Nucleotide sequence analysis of these amplicons revealed for the affected son 190/IV-2, but not for the unaffected daughter 190/IV-3, a heterozygous insertion of genomic nucleotides -2 and -1 causing a frameshift after residue 34 of the pre/prosequence and thus 29 novel residues without homology to PTHrP or any other protein. Our findings extend previous reports indicating that PTHrP haploinsufficiency causes skeletal abnormalities similar to those observed with heterozygous GNAS mutations. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bert Bravenboer
- Department of Endocrinology, Universitair Ziekenhuis Brussels, Brussels, Belgium
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Abstract
Pseudohypoparathyroidism (PHP) refers to a heterogeneous group of uncommon, yet related metabolic disorders that are characterized by impaired activation of the Gsα/cAMP/PKA signaling pathway by parathyroid hormone (PTH) and other hormones that interact with Gsa-coupled receptors. Proximal renal tubular resistance to PTH and thus hypocalcemia and hyperphosphatemia, frequently in presence of brachydactyly, ectopic ossification, early-onset obesity, or short stature are common features of PHP. Registries and large cohorts of patients are needed to conduct clinical and genetic research, to improve the still limited knowledge regarding the underlying disease mechanisms, and allow the development of novel therapies.
Collapse
Affiliation(s)
- Agnès Linglart
- INSERM-U1185, Paris Sud Paris-Saclay University, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France; APHP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Network OSCAR and 'Platform of Expertise Paris Sud for Rare Diseases, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France; APHP, Endocrinology and Diabetes for Children, Bicêtre Paris Sud Hospital, 64 Gabriel Péri Street, 94270 Le Kremlin Bicêtre, France.
| | - Michael A Levine
- Division of Endocrinology and Diabetes, Center for Bone Health, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman, School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom street, Boston, MA 02114, USA; Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, 50 Blossom street, Boston, MA 02114, USA
| |
Collapse
|
13
|
Qin L, Lou G, Guo L, Zhang Y, Wang H, Wang L, Hou Q, Liu H, Li X, Liao S. Targeted next-generation sequencing-based molecular diagnosis of congenital hand malformations in Chinese population. Sci Rep 2018; 8:12721. [PMID: 30143665 PMCID: PMC6109141 DOI: 10.1038/s41598-018-30940-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/04/2018] [Indexed: 01/01/2023] Open
Abstract
Congenital hand malformations is rare and characterized by hand deformities. It is highly heterogeneous, both clinically and genetically, which complicates the identification of causative genes and mutations. Recently, targeted next-generation (NGS) sequencing has been successfully used for the detection of heterogeneous diseases, and the use of NGS also has contributed significantly in evaluating the etiology of heterogeneous disease. Here, we employed targeted NGS to screen 248 genes involved in genetic skeletal disorders, including congenital hand malformations. Three pathogenic mutations located in the GJA1, ROR2 and TBX5 genes were detected in three large Chinese families with congenital hand malformations. Two novel mutations were reported, and a known causative mutation was verified in this Chinese population. This is also the first report that the same panel of targeted NGS was employed to perform molecular diagnosis of different subtypes of congenital hand malformations. Our study supported the application of a targeted NGS panel as an effective tool to detect the genetic cause for heterogeneous diseases in clinical diagnosis.
Collapse
Affiliation(s)
- Litao Qin
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guiyu Lou
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liangjie Guo
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuwei Zhang
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongdan Wang
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiaofang Hou
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Liu
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xichuan Li
- Department of Immunology, Tianjin Medical University, Tianjin, China.
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Mantovani G, Bastepe M, Monk D, de Sanctis L, Thiele S, Usardi A, Ahmed SF, Bufo R, Choplin T, De Filippo G, Devernois G, Eggermann T, Elli FM, Freson K, García Ramirez A, Germain-Lee EL, Groussin L, Hamdy N, Hanna P, Hiort O, Jüppner H, Kamenický P, Knight N, Kottler ML, Le Norcy E, Lecumberri B, Levine MA, Mäkitie O, Martin R, Martos-Moreno GÁ, Minagawa M, Murray P, Pereda A, Pignolo R, Rejnmark L, Rodado R, Rothenbuhler A, Saraff V, Shoemaker AH, Shore EM, Silve C, Turan S, Woods P, Zillikens MC, Perez de Nanclares G, Linglart A. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. Nat Rev Endocrinol 2018; 14:476-500. [PMID: 29959430 PMCID: PMC6541219 DOI: 10.1038/s41574-018-0042-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features. The participants in this Consensus Statement agreed that the diagnosis of PHP should be based on major criteria, including resistance to PTH, ectopic ossifications, brachydactyly and early-onset obesity. The clinical and laboratory diagnosis should be confirmed by a molecular genetic analysis. Patients should be screened at diagnosis and during follow-up for specific features, such as PTH resistance, TSH resistance, growth hormone deficiency, hypogonadism, skeletal deformities, oral health, weight gain, glucose intolerance or type 2 diabetes mellitus, and hypertension, as well as subcutaneous and/or deeper ectopic ossifications and neurocognitive impairment. Overall, a coordinated and multidisciplinary approach from infancy through adulthood, including a transition programme, should help us to improve the care of patients affected by these disorders.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program (PEBC), Institut d'Investigació Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Luisa de Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Susanne Thiele
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Alessia Usardi
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Roberto Bufo
- IPOHA, Italian Progressive Osseous Heteroplasia Association, Cerignola, Foggia, Italy
| | - Timothée Choplin
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Gianpaolo De Filippo
- APHP, Department of medicine for adolescents, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Guillemette Devernois
- K20, French PHP and related disorders patient association, Jouars Pontchartrain, France
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Gasthuisberg, University of Leuven, Leuven, Belgium
| | - Aurora García Ramirez
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Emily L Germain-Lee
- Albright Center & Center for Rare Bone Disorders, Division of Pediatric Endocrinology & Diabetes, Connecticut Children's Medical Center, Farmington, CT, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lionel Groussin
- APHP, Department of Endocrinology, Cochin Hospital (HUPC), Paris, France
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Neveen Hamdy
- Department of Medicine, Division of Endocrinology and Centre for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Hanna
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Kamenický
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- INSERM U1185, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Nina Knight
- UK acrodysostosis patients' group, London, UK
| | - Marie-Laure Kottler
- Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphate Metabolism, Caen University Hospital, Caen, France
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | - Elvire Le Norcy
- University of Paris Descartes, Sorbonne Paris Cité, Paris, France
- APHP, Department of Odontology, Bretonneau Hospital (PNVS), Paris, France
| | - Beatriz Lecumberri
- Department of Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain
- Department of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Regina Martin
- Osteometabolic Disorders Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Hospital das Clínicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Ángel Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, CIBERobn, ISCIII, Madrid, Spain
- Department of Pediatrics, Autonomous University of Madrid (UAM), Madrid, Spain
- Endocrine Diseases Research Group, Hospital La Princesa Institute for Health Research (IIS La Princesa), Madrid, Spain
| | | | - Philip Murray
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | | | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Rebecca Rodado
- AEPHP, Spanish PHP and related disorders patient association, Huércal-Overa, Almería, Spain
| | - Anya Rothenbuhler
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Children's Hospital, Birmingham, UK
| | - Ashley H Shoemaker
- Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eileen M Shore
- Departments of Orthopaedic Surgery and Genetics, Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Silve
- APHP, Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of Pediatrics, Division of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | | | - M Carola Zillikens
- Department of Internal Medicine, Bone Center Erasmus MC - University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain.
| | - Agnès Linglart
- APHP, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Platform of Expertise Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- APHP, Endocrinology and diabetes for children, Bicêtre Paris Sud Hospital (HUPS), Le Kremlin-Bicêtre, France.
- INSERM U1169, Bicêtre Paris Sud, Paris Sud - Paris Saclay University, Le Kremlin-Bicêtre, France.
| |
Collapse
|
15
|
Kim SW. Parathyroid Hormone-Related Protein in the Hand or Out of Hand? Endocrinol Metab (Seoul) 2018; 33:202-203. [PMID: 29947177 PMCID: PMC6021304 DOI: 10.3803/enm.2018.33.2.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Boramae Medical Center, Seoul, Korea.
| |
Collapse
|
16
|
Bae J, Choi HS, Park SY, Lee DE, Lee S. Novel Mutation in PTHLH Related to Brachydactyly Type E2 Initially Confused with Unclassical Pseudopseudohypoparathyroidism. Endocrinol Metab (Seoul) 2018; 33:252-259. [PMID: 29947179 PMCID: PMC6021309 DOI: 10.3803/enm.2018.33.2.252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/04/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Autosomal-dominant brachydactyly type E is a congenital abnormality characterized by small hands and feet, which is a consequence of shortened metacarpals and metatarsals. We recently encountered a young gentleman exhibiting shortening of 4th and 5th fingers and toes. Initially, we suspected him having pseudopseudohypoparathyroidism (PPHP) because of normal biochemical parameters, including electrolyte, Ca, P, and parathyroid hormone (PTH) levels; however, his mother and maternal grandmother had the same conditions in their hands and feet. Furthermore, his mother showed normal biochemical parameters. To the best of our knowledge, PPHP is inherited via a mutated paternal allele, owing to the paternal imprinting of GNAS (guanine nucleotide binding protein, alpha stimulating) in the renal proximal tubule. Therefore, we decided to further analyze the genetic background in this family. METHODS Whole exome sequencing was performed using genomic DNA from the affected mother, son, and the unaffected father as a negative control. RESULTS We selected the intersection between 45,490 variants from the mother and 45,646 variants from the son and excluded 27,512 overlapping variants identified from the father. By excluding homogenous and compound heterozygous variants and removing all previously reported variants, 147 variants were identified to be shared by the mother and son. Variants that had least proximities among species were excluded and finally 23 variants remained. CONCLUSION Among them, we identified a defect in parathyroid hormone like hormone (PTHLH), encoding the PTH-related protein, to be disease-causative. Herein, we report a family affected with brachydactyly type E2 caused by a novel PTHLH mutation, which was confused with PPHP with unclassical genetic penetrance.
Collapse
Affiliation(s)
- Jihong Bae
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Hong Seok Choi
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon, Korea
| | - So Young Park
- Department of Internal Medicine, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | | | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|
17
|
Pereda A, Garin I, Perez de Nanclares G. What to consider when pseudohypoparathyroidism is ruled out: iPPSD and differential diagnosis. BMC MEDICAL GENETICS 2018; 19:32. [PMID: 29499646 PMCID: PMC5834905 DOI: 10.1186/s12881-018-0530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pseudohypoparathyroidism (PHP) is a rare disease whose phenotypic features are rather difficult to identify in some cases. Thus, although these patients may present with the Albright's hereditary osteodystrophy (AHO) phenotype, which is characterized by small stature, obesity with a rounded face, subcutaneous ossifications, mental retardation and brachydactyly, its manifestations are somewhat variable. Indeed, some of them present with a complete phenotype, whereas others show only subtle manifestations. In addition, the features of the AHO phenotype are not specific to it and a similar phenotype is also commonly observed in other syndromes. Brachydactyly type E (BDE) is the most specific and objective feature of the AHO phenotype, and several genes have been associated with syndromic BDE in the past few years. Moreover, these syndromes have a skeletal and endocrinological phenotype that overlaps with AHO/PHP. In light of the above, we have developed an algorithm to aid in genetic testing of patients with clinical features of AHO but with no causative molecular defect at the GNAS locus. Starting with the feature of brachydactyly, this algorithm allows the differential diagnosis to be broadened and, with the addition of other clinical features, can guide genetic testing. METHODS We reviewed our series of patients (n = 23) with a clinical diagnosis of AHO and with brachydactyly type E or similar pattern, who were negative for GNAS anomalies, and classify them according to the diagnosis algorithm to finally propose and analyse the most probable gene(s) in each case. RESULTS A review of the clinical data for our series of patients, and subsequent analysis of the candidate gene(s), allowed detection of the underlying molecular defect in 12 out of 23 patients: five patients harboured a mutation in PRKAR1A, one in PDE4D, four in TRPS1 and two in PTHLH. CONCLUSIONS This study confirmed that the screening of other genes implicated in syndromes with BDE and AHO or a similar phenotype is very helpful for establishing a correct genetic diagnosis for those patients who have been misdiagnosed with "AHO-like phenotype" with an unknown genetic cause, and also for better describing the characteristic and differential features of these less common syndromes.
Collapse
Affiliation(s)
- Arrate Pereda
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, C/ Jose Atxotegi s/n, 01009 Vitoria-Gasteiz, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Intza Garin
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, C/ Jose Atxotegi s/n, 01009 Vitoria-Gasteiz, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, BioAraba National Health Institute, OSI Araba University Hospital, C/ Jose Atxotegi s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
18
|
Pereda A, Garzon-Lorenzo L, Garin I, Cruz-Rojo J, Sanchez Del Pozo J, Perez de Nanclares G. The p.R56* mutation in PTHLH causes variable brachydactyly type E. Am J Med Genet A 2017; 173:816-819. [PMID: 28211986 DOI: 10.1002/ajmg.a.38067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Arrate Pereda
- Molecular (Epi) Genetics Laboratory, OSI Araba, University Hospital, Vitoria-Gasteiz, Spain
- Department of Biochemistry and Molecular Biology, University of Basque Country, Leioa, Spain
| | - Lucia Garzon-Lorenzo
- Department of Pediatrics, Division of Endocrinology, 12 de Octubre Hospital, Madrid, Spain
| | - Intza Garin
- Molecular (Epi) Genetics Laboratory, OSI Araba, University Hospital, Vitoria-Gasteiz, Spain
| | - Jaime Cruz-Rojo
- Department of Pediatrics, Division of Endocrinology, 12 de Octubre Hospital, Madrid, Spain
| | - Jaime Sanchez Del Pozo
- Department of Pediatrics, Division of Endocrinology, 12 de Octubre Hospital, Madrid, Spain
| | | |
Collapse
|
19
|
Turan S. Current Nomenclature of Pseudohypoparathyroidism: Inactivating Parathyroid Hormone/Parathyroid Hormone-Related Protein Signaling Disorder. J Clin Res Pediatr Endocrinol 2017; 9:58-68. [PMID: 29280743 PMCID: PMC5790322 DOI: 10.4274/jcrpe.2017.s006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Disorders related to parathyroid hormone (PTH) resistance and PTH signaling pathway impairment are historically classified under the term of pseudohypoparathyroidism (PHP). The disease was first described and named by Fuller Albright and colleagues in 1942. Albright hereditary osteodystrophy (AHO) is described as an associated clinical entity with PHP, characterized by brachydactyly, subcutaneous ossifications, round face, short stature and a stocky build. The classification of PHP is further divided into PHP-Ia, pseudo-PHP (pPHP), PHP-Ib, PHP-Ic and PHP-II according to the presence or absence of AHO, together with an in vivo response to exogenous PTH and the measurement of Gsα protein activity in peripheral erythrocyte membranes in vitro. However, PHP classification fails to differentiate all patients with different clinical and molecular findings for PHP subtypes and classification become more complicated with more recent molecular characterization and new forms having been identified. So far, new classifications have been established by the EuroPHP network to cover all disorders of the PTH receptor and its signaling pathway. Inactivating PTH/PTH-related protein signaling disorder (iPPSD) is the new name proposed for a group of these disorders and which can be further divided into subtypes - iPPSD1 to iPPSD6. These are termed, starting from PTH receptor inactivation mutation (Eiken and Blomstrand dysplasia) as iPPSD1, inactivating Gsα mutations (PHP-Ia, PHP-Ic and pPHP) as iPPSD2, loss of methylation of GNAS DMRs (PHP-Ib) as iPPSD3, PRKAR1A mutations (acrodysostosis type 1) as iPPSD4, PDE4D mutations (acrodysostosis type 2) as iPPSD5 and PDE3A mutations (autosomal dominant hypertension with brachydactyly) as iPPSD6. iPPSDx is reserved for unknown molecular defects and iPPSDn+1 for new molecular defects which are yet to be described. With these new classifications, the aim is to clarify the borders of each different subtype of disease and make the classification according to molecular pathology. The iPPSD group is designed to be expandable and new classifications will readily fit into it as necessary.
Collapse
Affiliation(s)
- Serap Turan
- Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
,* Address for Correspondence: Marmara University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey Phone: +90 216 625 45 45 E-mail:
| |
Collapse
|
20
|
Tafaj O, Jüppner H. Pseudohypoparathyroidism: one gene, several syndromes. J Endocrinol Invest 2017; 40:347-356. [PMID: 27995443 DOI: 10.1007/s40618-016-0588-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/25/2016] [Indexed: 01/04/2023]
Abstract
Pseudohypoparathyroidism (PHP) and pseudopseudohypoparathyroidism (PPHP) are caused by mutations and/or epigenetic changes at the complex GNAS locus on chromosome 20q13.3 that undergoes parent-specific methylation changes at several sites. GNAS encodes the alpha-subunit of the stimulatory G protein (Gsα) and several splice variants thereof. Heterozygous inactivating mutations involving the maternal GNAS exons 1-13 cause PHP type Ia (PHP1A). Because of much reduced paternal Gsα expression in certain tissues, such as the proximal renal tubules, thyroid, and pituitary, there is little or no Gsα protein in the presence of maternal GNAS mutations, thus leading to PTH-resistant hypocalcemia and hyperphosphatemia. When located on the paternal allele, the same or similar GNAS mutations are the cause of PPHP. Besides biochemical abnormalities, patients affected by PHP1A show developmental abnormalities, referred to as Albrights hereditary osteodystrophy (AHO). Some, but not all of these AHO features are encountered also in patients affected by PPHP, who typically show no laboratory abnormalities. Autosomal dominant PHP type Ib (AD-PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16, which are associated with loss-of-methylation (LOM) at exon A/B alone or at all maternally methylated GNAS exons. LOM at exon A/B and the resulting biallelic expression of A/B transcripts reduces Gsα expression, thus leading to hormonal resistance. Epigenetic changes at all differentially methylated GNAS regions are also observed in sporadic PHP1B, the most frequent disease variant, which remains unresolved at the molecular level, except for rare cases with paternal uniparental isodisomy or heterodisomy of chromosome 20q (patUPD20q).
Collapse
Affiliation(s)
- O Tafaj
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Thier 10, 50 Blossom Street, Boston, MA, 02114, USA
| | - H Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Thier 10, 50 Blossom Street, Boston, MA, 02114, USA.
- Pediatric Nephrology Unit, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Fontana P, Tortora C, Petillo R, Malacarne M, Cavani S, Miniero M, D'Ambrosio P, De Brasi D, Pisanti MA. Brachydactyly type E in an Italian family with 6p25 trisomy. Eur J Med Genet 2017; 60:195-199. [PMID: 28111183 DOI: 10.1016/j.ejmg.2017.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 11/19/2022]
Abstract
Brachydactyly type E is a congenital limb malformation characterized by small hands and feet as a result of shortened metacarpals and metatarsals. Genetic causes of this anomaly are heterogeneous and only partially characterized. In this report we describe an Italian family in which four subjects share brachydactyly type E and a 3 Mb microduplication in region 6p25. The duplication involves the gene FOXC1, expressed during the osteoblast differentiation, which appears a potential candidate gene for brachydactyly.
Collapse
Affiliation(s)
- Paolo Fontana
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy.
| | - Cristina Tortora
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Roberta Petillo
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | | | - Simona Cavani
- Division of Medical Genetics, Galliera Hospital, Genoa, Italy
| | - Martina Miniero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University of Naples, Naples, Italy
| | - Paola D'Ambrosio
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Davide De Brasi
- Service of Medical Genetics, Cardarelli Hospital, Naples, Italy
| | | |
Collapse
|
22
|
Thiele S, Mantovani G, Barlier A, Boldrin V, Bordogna P, De Sanctis L, Elli FM, Freson K, Garin I, Grybek V, Hanna P, Izzi B, Hiort O, Lecumberri B, Pereda A, Saraff V, Silve C, Turan S, Usardi A, Werner R, de Nanclares GP, Linglart A. From pseudohypoparathyroidism to inactivating PTH/PTHrP signalling disorder (iPPSD), a novel classification proposed by the EuroPHP network. Eur J Endocrinol 2016; 175:P1-P17. [PMID: 27401862 DOI: 10.1530/eje-16-0107] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Disorders caused by impairments in the parathyroid hormone (PTH) signalling pathway are historically classified under the term pseudohypoparathyroidism (PHP), which encompasses rare, related and highly heterogeneous diseases with demonstrated (epi)genetic causes. The actual classification is based on the presence or absence of specific clinical and biochemical signs together with an in vivo response to exogenous PTH and the results of an in vitro assay to measure Gsa protein activity. However, this classification disregards other related diseases such as acrodysostosis (ACRDYS) or progressive osseous heteroplasia (POH), as well as recent findings of clinical and genetic/epigenetic background of the different subtypes. Therefore, the EuroPHP network decided to develop a new classification that encompasses all disorders with impairments in PTH and/or PTHrP cAMP-mediated pathway. DESIGN AND METHODS Extensive review of the literature was performed. Several meetings were organised to discuss about a new, more effective and accurate way to describe disorders caused by abnormalities of the PTH/PTHrP signalling pathway. RESULTS AND CONCLUSIONS After determining the major and minor criteria to be considered for the diagnosis of these disorders, we proposed to group them under the term 'inactivating PTH/PTHrP signalling disorder' (iPPSD). This terminology: (i) defines the common mechanism responsible for all diseases; (ii) does not require a confirmed genetic defect; (iii) avoids ambiguous terms like 'pseudo' and (iv) eliminates the clinical or molecular overlap between diseases. We believe that the use of this nomenclature and classification will facilitate the development of rationale and comprehensive international guidelines for the diagnosis and treatment of iPPSDs.
Collapse
Affiliation(s)
- Susanne Thiele
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Giovanna Mantovani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anne Barlier
- APHMHôpital la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Valentina Boldrin
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Bordogna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luisa De Sanctis
- Department of Public Health and Pediatric SciencesUniversity of Torino, Torino, Italy
| | - Francesca M Elli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoEndocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Intza Garin
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Virginie Grybek
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Patrick Hanna
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Benedetta Izzi
- Department of Cardiovascular SciencesCenter for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Olaf Hiort
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Beatriz Lecumberri
- Department of Endocrinology and NutritionLa Paz University Hospital, Madrid, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
- Department of Biochemistry and Molecular BiologyUniversity of Basque Country, Leioa, Spain
| | - Vrinda Saraff
- Department of Endocrinology and DiabetesBirmingham Children's Hospital, Birmingham, UK
| | - Caroline Silve
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
- APHPService de Biochimie et Génétique Moléculaires, Hôpital Cochin, Paris, France
| | - Serap Turan
- Department of PediatricsDivision of Endocrinology and Diabetes, Marmara University, Istanbul, Turkey
| | - Alessia Usardi
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- APHPDepartment of Paediatric Endocrinology and Diabetology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| | - Ralf Werner
- Division of Experimental Pediatric Endocrinology and DiabetesDepartment of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics LaboratoryBioAraba National Health Institute, OSI Araba University Hospital, Vitoria-Gasteiz, Spain
| | - Agnès Linglart
- APHPReference Center for rare disorders of the Calcium and Phosphate Metabolism, filière OSCAR and Plateforme d'Expertise Maladies Rares Paris-Sud, Hôpital Bicêtre Paris Sud, Le Kremlin Bicêtre, France
- INSERM U1169Hôpital Bicêtre, Le Kremlin Bicêtre, et Université Paris-Saclay, Le Kremlin Bicêtre, France
- APHPDepartment of Paediatric Endocrinology and Diabetology, Bicêtre Paris Sud hospital, Le Kremlin Bicêtre, France
| |
Collapse
|