1
|
Nisbet AF, Viswanathan A, George AM, Arias P, Klein SD, Nevado J, Parra A, Pascual P, Romeo DJ, Tenorio-Castaño J, Taylor JA, Zackai EH, Lapunzina P, Kalish JM. Phenotypic spectrum and tumor risk in Simpson-Golabi-Behmel syndrome: Case series and comprehensive literature review. Am J Med Genet A 2024; 194:e63840. [PMID: 39158128 PMCID: PMC11540722 DOI: 10.1002/ajmg.a.63840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is a rare congenital overgrowth condition characterized by macrosomia, macroglossia, coarse facial features, and development delays. It is caused by pathogenic variants in the GPC3 gene on chromosome Xq26.2. Here, we performed a comprehensive literature review and phenotyping of known patients with molecularly confirmed SGBS and reviewed a novel cohort of 22 patients. Using these data, we characterized the tumor risk for Wilms tumor and hepatoblastoma to suggest appropriate screening for this patient population. In addition, we discuss the phenotypic overlap between SGBS and Beckwith-Wiedemann Spectrum.
Collapse
Affiliation(s)
- Alex F. Nisbet
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aravind Viswanathan
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew M. George
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pedro Arias
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- INGEMM-IdiPaz, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Steven D. Klein
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julian Nevado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- INGEMM-IdiPaz, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Alejandro Parra
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- INGEMM-IdiPaz, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Patricia Pascual
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- INGEMM-IdiPaz, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Dominic J. Romeo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jair Tenorio-Castaño
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- INGEMM-IdiPaz, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Jesse A. Taylor
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine H. Zackai
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- INGEMM-IdiPaz, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Jennifer M. Kalish
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Fiandrino G, Arossa A, Ghirardello S, Kalantari S, Rossi C, Bonasoni MP, Cesari S, Rizzuti T, Giorgio E, Bassanese F, Scatigno AL, Meroni A, Melito C, Feltri M, Longo S, Figar TA, Andorno A, Gelli MC, Bertozzi M, Spinillo A, Riccipetitoni G, Valente EM, Paulli M, Sirchia F. SIMPSON-GOLABI-BEHMEL syndrome type 1: How placental immunohistochemistry can rapidly Predict the diagnosis. Placenta 2022; 126:119-124. [DOI: 10.1016/j.placenta.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
3
|
Andrysiak-Mamos E, Sagan KP, Lietz-Kijak D, Kijak E, Kaźmierczak B, Pietrzyk A, Sowinska-Przepiera E, Sagan L, Syrenicz A. Simpson-Golabi-Behmel syndrome in a 39-year-old male patient with suspected acromegaly-A case study. Am J Med Genet A 2018; 179:322-328. [PMID: 30592149 DOI: 10.1002/ajmg.a.61013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 11/10/2022]
Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is a rare genetic condition and is inherited in an X-linked recessive manner. The disease is caused by a change in the nucleotide sequence of an X-linked gene encoding glypican 3, a protein belonging to the heparan-sulfate membrane proteoglycan family. SGBS case studies are almost entirely restricted to the pediatric population. Scarce literature describing SGBS course in adults may be due to both the high mortality of SGBS patients in childhood and low rate of SGBS diagnosis in adults. We present a case of a 39-year-old man with an initial diagnosis of acromegaly. Genetic tests revealed a hitherto unreported deletion in the GPC3 gene. SGBS manifestations in our patient included tall stature, dysmorphic features, and central nervous system (CNS) anatomical pathology. MRI of the head visualized abnormalities of median line structures, a feature consistent with SGBS: an unclosed craniopharyngeal canal, a sellar-suprasellar cyst, dysmorphic pituitary gland, and a cyst of the septum pellucidum. Moreover, cardiomyopathy complicated by life-threatening paroxysmal ventricular tachycardia was diagnosed. Although various cardiac anomalies are often found in SGBS, their pathogenesis is unclear and may be multifactorial. We believe that the presented case contributes to a better understanding of SGBS and may help clinicians in introducing prophylaxis and treatment for its comorbidities.
Collapse
Affiliation(s)
- Elżbieta Andrysiak-Mamos
- Pomeranian Medical University, Department of Endocrinology, Metabolic and Internal Diseases, Szczecin, Poland
| | - Karol Piotr Sagan
- Pomeranian Medical University, Department of Endocrinology, Metabolic and Internal Diseases, Szczecin, Poland
| | - Danuta Lietz-Kijak
- Pomeranian Medical University, Independent Unit of Propaedeutic and Dental Physical Diagnostics, Faculty of Medicine and Dentistry, Szczecin, Poland
| | - Edward Kijak
- Pomeranian Medical University, Scientific Unit of Dysfunction of the Masticatory System, Faculty of Medicine and Dentistry, Department of Prosthodontics, Szczecin, Poland
| | - Beata Kaźmierczak
- Pomeranian Medical University, Ophthalmology Clinic, Szczecin, Poland
| | | | - Elżbieta Sowinska-Przepiera
- Pomeranian Medical University, Department of Endocrinology, Metabolic and Internal Diseases, Szczecin, Poland
| | - Leszek Sagan
- Pomeranian Medical University, Department of Neurosurgery and Pediatric Neurosurgery, Szczecin, Poland
| | - Anhelli Syrenicz
- Pomeranian Medical University, Department of Endocrinology, Metabolic and Internal Diseases, Szczecin, Poland
| |
Collapse
|
4
|
Vuillaume ML, Moizard MP, Rossignol S, Cottereau E, Vonwill S, Alessandri JL, Busa T, Colin E, Gérard M, Giuliano F, Lambert L, Lefevre M, Kotecha U, Nampoothiri S, Netchine I, Raynaud M, Brioude F, Toutain A. Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature. Hum Mutat 2018; 39:790-805. [PMID: 29637653 DOI: 10.1002/humu.23428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 11/08/2022]
Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications).
Collapse
Affiliation(s)
- Marie-Laure Vuillaume
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Marie-Pierre Moizard
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Sylvie Rossignol
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France.,Service de génétique médicale, CHU de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Edouard Cottereau
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France
| | - Sandrine Vonwill
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | | | - Tiffany Busa
- Unité de Génétique Clinique, Département de génétique médicale, Hôpital de la Timone, CHU de Marseille, Marseille, France
| | - Estelle Colin
- Département de biochimie et génétique, CHU d'Angers, Angers, France
| | - Marion Gérard
- Service de génétique, CHU de Caen, Hôpital Clémenceau, Avenue Georges Clémenceau, Caen, France
| | - Fabienne Giuliano
- Service de génétique médicale, CHU de Nice, Hôpital l'Archet 2, Nice, France
| | - Laetitia Lambert
- Service de Génétique Clinique, Hôpital d'Enfants, CHU de Nancy, Rue du Morvan, Vandoeuvre-Lès-Nancy, France
| | - Mathilde Lefevre
- Centre de génétique, Hôpital d'enfants, CHU Dijon Bourgogne, Dijon, France
| | - Udhaya Kotecha
- Center of Medical Genetics, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, AIMS Poneakara P O, Cochin, Kerala, India
| | - Irène Netchine
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Martine Raynaud
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| | - Frédéric Brioude
- Unité d'explorations fonctionnelles endocriniennes, CHU Paris Est, Hôpital d'Enfants Armand-Trousseau, Paris, France
| | - Annick Toutain
- Service de Génétique, CHU de Tours, Hôpital Bretonneau, Tours, France.,INSERM UMR_U930, Faculté de Médecine, Université de Tours, Tours, France
| |
Collapse
|
5
|
Dwyer CA, Esko JD. Glycan susceptibility factors in autism spectrum disorders. Mol Aspects Med 2016; 51:104-14. [PMID: 27418189 DOI: 10.1016/j.mam.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Idiopathic autism spectrum disorders (ASDs) are neurodevelopmental disorders with unknown etiology. An estimated 1:68 children in the U.S. are diagnosed with ASDs, making these disorders a substantial public health issue. Recent advances in genome sequencing have identified numerous genetic variants across the ASD patient population. Many genetic variants identified occur in genes that encode glycosylated extracellular proteins (proteoglycans or glycoproteins) or enzymes involved in glycosylation (glycosyltransferases and sulfotransferases). It remains unknown whether "glycogene" variants cause changes in glycosylation and whether they contribute to the etiology and pathogenesis of ASDs. Insights into glycan susceptibility factors are provided by studies in the normal brain and congenital disorders of glycosylation, which are often accompanied by ASD-like behaviors. The purpose of this review is to present evidence that supports a contribution of extracellular glycans and glycoconjugates to the etiology and pathogenesis of idiopathic ASDs and other types of pervasive neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chrissa A Dwyer
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|