1
|
Kim JW, Kim SY, Lee D. Ocular findings in Baraitser-Winter syndrome with a de novo mutation in the ACTG1 gene: a case report. BMC Ophthalmol 2024; 24:524. [PMID: 39639254 PMCID: PMC11619142 DOI: 10.1186/s12886-024-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Baraitser-Winter syndrome (BWS) is rare, and no previous reports have described the visual course of patients with this condition. Herein, we report the long-term visual outcomes and ocular features of a 6-year-old patient diagnosed with BWS. CASE PRESENTATION A 6-year-old female patient visited our clinic complaining of low vision. External examination revealed mild ptosis and hypertelorism, and the patient had mild intellectual disability. Her visual acuity during the first visit was 20/100 in the right eye and 20/50 in the left eye. Cycloplegic refraction revealed compound hyperopic astigmatism that was more severe in the right eye than in the left eye. Anterior segment examination revealed an iris coloboma at the inferior margin in both eyes. Fundus examination revealed huge, inferior retinal colobomata in both eyes. The macular contours were normal on optical coherence tomography. Considering the ophthalmic features and systemic signs, the patient was recommended to undergo genetic evaluation. Whole-exome sequencing revealed a heterozygous, de novo, and likely pathogenic variant (c.502G > T; p.Gly168Cys) in actin gamma 1 (ACTG1), and the patient was finally diagnosed with BWS. To further evaluate her systemic abnormalities, examinations including brain imaging and laboratory tests, were performed. Brain magnetic resonance imaging revealed a congenital cortical malformation with pachygyria, and pure-tone audiometry demonstrated bilateral sensorineural hearing loss. Echocardiographic and kidney ultrasonographic features were normal. The patient's amblyopia was treated with eye glasses for full correction and occlusion of her left eye. After 3 years of regular follow-up after the initial diagnosis, the patient's visual acuity improved to 25/25 in both eyes. With the collaboration of pediatricians, the patient and her guardians were fully counseled on the expected symptoms and complications associated with BWS, and her long-term growth trends were being observed at the time of reporting. CONCLUSIONS BWS, a rare genetic disease, was diagnosed in a pediatric patient who presented with various ophthalmic signs, including ptosis, retinal colobomata, and iris colobomata. If the optic disc and macula are spared from the retinal coloboma, a favorable visual outcome may be achieved via consistent treatment for amblyopia and regular follow-up.
Collapse
Affiliation(s)
- Jae Won Kim
- Department of Ophthalmology, Daegu catholic university school of medicine, Daegu, Korea
| | - Sook-Young Kim
- Department of Ophthalmology, Daegu catholic university school of medicine, Daegu, Korea
| | - Donghun Lee
- Department of Ophthalmology, Daegu catholic university school of medicine, Daegu, Korea.
| |
Collapse
|
2
|
Greve JN, Marquardt A, Heiringhoff R, Reindl T, Thiel C, Di Donato N, Taft MH, Manstein DJ. The non-muscle actinopathy-associated mutation E334Q in cytoskeletal γ-actin perturbs interaction of actin filaments with myosin and ADF/cofilin family proteins. eLife 2024; 12:RP93013. [PMID: 38446501 PMCID: PMC10942649 DOI: 10.7554/elife.93013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.
Collapse
Affiliation(s)
- Johannes N Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
- Division for Structural Biochemistry, Hannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Graziani L, Cinnirella G, Ferradini V, Conte C, Bascio FL, Bengala M, Sangiuolo F, Novelli G. A likely pathogenic ACTG1 variant in a child showing partial phenotypic overlap with Baraitser-Winter syndrome. Am J Med Genet A 2023; 191:1565-1569. [PMID: 36810952 DOI: 10.1002/ajmg.a.63157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Baraitser-Winter syndrome (BRWS) is a rare autosomal dominant disease (AD) caused by heterozygous variants in ACTB (BRWS1) or ACTG1 (BRWS2) genes. BRWS features developmental delay/intellectual disability of variable degree and craniofacial dysmorphisms. Brain abnormalities (especially pachygyria), microcephaly, epilepsy, as well as hearing impairment, cardiovascular and genitourinary abnormalities may be present. We report on a 4-year-old female, who was addressed to our institution because of psychomotor delay associated with microcephaly and dysmorphic features, short stature, mild bilateral sensorineural hearing loss, mild cardiac septal hypertrophy, and abdominal swelling. Clinical exome sequencing detected a c.617G>A p.(Arg206Gln) de novo variant in ACTG1 gene. Such variant has been previously reported in association with a form of AD nonsyndromic sensorineural progressive hearing loss and we classified it as likely pathogenic according to ACMG/AMP criteria, despite our patient's phenotype only partially overlapped BWRS2. Our finding supports the extreme variability of the ACTG1-related disorders, ranging from classical BRWS2 to nuanced clinical expressions not fitting the original description, and occasionally featuring previously undescribed clinical findings.
Collapse
Affiliation(s)
- Ludovico Graziani
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giacomo Cinnirella
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Conte
- Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Federica Lo Bascio
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Bengala
- Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Tor Vergata University Hospital, Medical Genetics Unit, Rome, Italy
| |
Collapse
|
4
|
Göbel T, Berninger L, Schlump A, Feige B, Runge K, Nickel K, Schiele MA, van Elst LT, Hotz A, Alter S, Domschke K, Tzschach A, Endres D. Obsessive-compulsive symptoms in ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome. J Neural Transm (Vienna) 2022; 129:1387-1391. [PMID: 36205783 PMCID: PMC9550762 DOI: 10.1007/s00702-022-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022]
Abstract
Symptoms of obsessive–compulsive disorder (OCD) may rarely occur in the context of genetic syndromes. So far, an association between obsessive–compulsive symptoms (OCS) and ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome has not been described as yet. A thoroughly phenotyped patient with OCS and ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome is presented. The 25-year-old male patient was admitted to in-patient psychiatric care due to OCD. A whole-exome sequencing analysis was initiated as the patient also showed an autistic personality structure, below average intelligence measures, craniofacial dysmorphia signs, sensorineural hearing loss, and sinus cavernoma as well as subtle cardiac and ophthalmological alterations. The diagnosis of Baraitser-Winter cerebrofrontofacial syndrome type 2 was confirmed by the detection of a heterozygous likely pathogenic variant in the ACTG1 gene [c.1003C > T; p.(Arg335Cys), ACMG class 4]. The automated analysis of magnetic resonance imaging (MRI) revealed changes in the orbitofrontal, parietal, and occipital cortex of both sides and in the right mesiotemporal cortex. Electroencephalography (EEG) revealed intermittent rhythmic delta activity in the occipital and right temporal areas. Right mesiotemporal MRI and EEG alterations could be caused by a small brain parenchymal defect with hemosiderin deposits after a cavernomectomy. This paradigmatic case provides evidence of syndromic OCS in ACTG1-associated Baraitser-Winter cerebrofrontofacial syndrome. The MRI findings are compatible with a dysfunction of the cortico-striato-thalamo-cortical loops involved in OCD. If a common pathophysiology is confirmed in future studies, corresponding patients with Baraitser-Winter cerebrofrontofacial syndrome type 2 should be screened for OCS. The association may also contribute to a better understanding of OCD pathophysiology.
Collapse
Affiliation(s)
- Theresa Göbel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lea Berninger
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Schlump
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alrun Hotz
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Svenja Alter
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Tzschach
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
De Novo ACTG1 Variant Expands the Phenotype and Genotype of Partial Deafness and Baraitser-Winter Syndrome. Int J Mol Sci 2022; 23:ijms23020692. [PMID: 35054877 PMCID: PMC8776155 DOI: 10.3390/ijms23020692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Actin molecules are fundamental for embryonic structural and functional differentiation; γ-actin is specifically required for the maintenance and function of cytoskeletal structures in the ear, resulting in hearing. Baraitser–Winter Syndrome (B-WS, OMIM #243310, #614583) is a rare, multiple-anomaly genetic disorder caused by mutations in either cytoplasmically expressed actin gene, ACTB (β-actin) or ACTG1 (γ-actin). The resulting actinopathies cause characteristic cerebrofrontofacial and developmental traits, including progressive sensorineural deafness. Both ACTG1-related non-syndromic A20/A26 deafness and B-WS diagnoses are characterized by hypervariable penetrance in phenotype. Here, we identify a 28th patient worldwide carrying a mutated γ-actin ACTG1 allele, with mildly manifested cerebrofrontofacial B-WS traits, hypervariable penetrance of developmental traits and sensorineural hearing loss. This patient also displays brachycephaly and a complete absence of speech faculty, previously unreported for ACTG1-related B-WS or DFNA20/26 deafness, representing phenotypic expansion. The patient’s exome sequence analyses (ES) confirms a de novo ACTG1 variant previously unlinked to the pathology. Additional microarray analysis uncover no further mutational basis for dual molecular diagnosis in our patient. We conclude that γ-actin c.542C > T, p.Ala181Val is a dominant pathogenic variant, associated with mildly manifested facial and cerebral traits typical of B-WS, hypervariable penetrance of developmental traits and sensorineural deafness. We further posit and present argument and evidence suggesting ACTG1-related non-syndromic DFNA20/A26 deafness is a manifestation of undiagnosed ACTG1-related B-WS.
Collapse
|
6
|
Vriend I, Oegema R. Genetic causes underlying grey matter heterotopia. Eur J Paediatr Neurol 2021; 35:82-92. [PMID: 34666232 DOI: 10.1016/j.ejpn.2021.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Grey matter heterotopia (GMH) can cause of seizures and are associated with a wide range of neurodevelopmental disorders and syndromes. They are caused by a failure of neuronal migration during fetal development, leading to clusters of neurons that have not reached their final destination in the cerebral cortex. We have performed an extensive literature search in Pubmed, OMIM, and Google scholar and provide an overview of known genetic associations with periventricular nodular heterotopia (PNVH), subcortical band heterotopia (SBH) and other subcortical heterotopia (SUBH). We classified the heterotopias as PVNH, SBH, SUBH or other and collected the genetic information, frequency, imaging features and salient features in tables for every subtype of heterotopia. This resulted in 105 PVNH, 16 SBH and 25 SUBH gene/locus associations, making a total of 146 genes and chromosomal loci. Our study emphasizes the extreme genetic heterogeneity underlying GMH. It will aid the clinician in establishing an differential diagnosis and eventually a molecular diagnosis in GMH patients. A diagnosis enables proper counseling of prognosis and recurrence risks, and enables individualized patient management.
Collapse
Affiliation(s)
- Ilona Vriend
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
7
|
DFNA20/26 and Other ACTG1-Associated Phenotypes: A Case Report and Review of the Literature. Audiol Res 2021; 11:582-593. [PMID: 34698053 PMCID: PMC8544197 DOI: 10.3390/audiolres11040052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Since the early 2000s, an ever-increasing subset of missense pathogenic variants in the ACTG1 gene has been associated with an autosomal-dominant, progressive, typically post-lingual non-syndromic hearing loss (NSHL) condition designed as DFNA20/26. ACTG1 gene encodes gamma actin, the predominant actin protein in the cytoskeleton of auditory hair cells; its normal expression and function are essential for the stereocilia maintenance. Different gain-of-function pathogenic variants of ACTG1 have been associated with two major phenotypes: DFNA20/26 and Baraitser-Winter syndrome, a multiple congenital anomaly disorder. Here, we report a novel ACTG1 variant [c.625G>A (p. Val209Met)] in an adult patient with moderate-severe NSHL characterized by a downsloping audiogram. The patient, who had a clinical history of slowly progressive NSHL and tinnitus, was referred to our laboratory for the analysis of a large panel of NSHL-associated genes by next generation sequencing. An extensive review of previously reported ACTG1 variants and their associated phenotypes was also performed.
Collapse
|
8
|
Schnabel F, Kamphausen SB, Funke R, Kaulfuß S, Wollnik B, Zenker M. Aplasia cutis congenita in a CDC42-related developmental phenotype. Am J Med Genet A 2020; 185:850-855. [PMID: 33283961 DOI: 10.1002/ajmg.a.62009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 11/09/2022]
Abstract
Cell division cycle 42 (CDC42) is a small Rho GTPase, which serves as a fundamental intracellular signal node regulating actin cytoskeletal dynamics and several other integral cellular processes. CDC42-associated disorders encompass a broad clinical spectrum including Takenouchi-Kosaki syndrome, autoinflammatory syndromes and neurodevelopmental phenotypes mimicking RASopathies. Dysregulation of CDC42 signaling by genetic defects in either DOCK6 or ARHGAP31 is also considered to play a role in the pathogenesis of Adams-Oliver syndrome (AOS). Here, we report a mother and her child carrying the previously reported pathogenic CDC42 variant c.511G>A (p.Glu171Lys). Both affected individuals presented with short stature, distinctive craniofacial features, pectus deformity as well as heart and eye anomalies, similar to the recently described Noonan syndrome-like phenotype associated with this variant. Remarkably, one of the patients additionally exhibited aplasia cutis congenita of the scalp. Multi-gene panel sequencing of the known AOS-causative genes and whole exome sequencing revealed no second pathogenic variant in any disease-associated gene explaining the aplasia cutis phenotype in our patient. This observation further expands the phenotypic spectrum of CDC42-associated disorders and underscores the role of CDC42 dysregulation in the pathogenesis of aplasia cutis congenita.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | | | - Rudolf Funke
- Department of Neuropediatrics, Sozialpädiatrisches Zentrum, Kassel, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines To Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
9
|
Accogli A, Severino M, Riva A, Madia F, Balagura G, Iacomino M, Carlini B, Baldassari S, Giacomini T, Croci C, Pisciotta L, Messana T, Boni A, Russo A, Bilo L, Tonziello R, Coppola A, Filla A, Mecarelli O, Casalone R, Pisani F, Falsaperla R, Marino S, Parisi P, Ferretti A, Elia M, Luchetti A, Milani D, Vanadia F, Silvestri L, Rebessi E, Parente E, Vatti G, Mancardi MM, Nobili L, Capra V, Salpietro V, Striano P, Zara F. Targeted re-sequencing in malformations of cortical development: genotype-phenotype correlations. Seizure 2020; 80:145-152. [DOI: 10.1016/j.seizure.2020.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
|
10
|
Zhang K, Cox E, Strom S, Xu ZL, Disilvestro A, Usrey K. Prenatal presentation and diagnosis of Baraitser-Winter syndrome using exome sequencing. Am J Med Genet A 2020; 182:2124-2128. [PMID: 32588558 DOI: 10.1002/ajmg.a.61725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 11/08/2022]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) is a rare autosomal dominant developmental disorder associated with missense mutations in the genes ACTB or ACTG1. The classic presentation of BWCFF is discerned by the combination of unique craniofacial characteristics including ocular coloboma, intellectual disability, and hypertelorism. Congenital contractures and organ malformations are often present, including structural defects in the brain, heart, renal, and musculoskeletal system. However, there is limited documentation regarding its prenatal presentation that may encourage healthcare providers to be aware of this disorder when presented throughout pregnancy. Herein we describe a case of a pregnancy with large cystic hygroma and omphalocele. Whole exome sequencing (WES) was performed and a de novo, heterozygous, likely pathogenic mutation in ACTB was detected, c.1004G>A (p.Arg335His), conferring a diagnosis of BWCFF.
Collapse
Affiliation(s)
- Kermit Zhang
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Eleina Cox
- Fulgent Genetics, Temple City, California, USA
| | | | | | - Alexis Disilvestro
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.,Maternal Fetal Medicine, Carilion Clinic, Roanoke, Virginia, USA
| | - Kelly Usrey
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA.,Maternal Fetal Medicine, Carilion Clinic, Roanoke, Virginia, USA
| |
Collapse
|
11
|
Hampshire K, Martin PM, Carlston C, Slavotinek A. Baraitser-Winter cerebrofrontofacial syndrome: Report of two adult siblings. Am J Med Genet A 2020; 182:1923-1932. [PMID: 32506774 DOI: 10.1002/ajmg.a.61637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 11/07/2022]
Abstract
Baraitser-Winter cerebrofrontofacial syndrome (BWCS) is a rare, autosomal dominant condition that is characterized by intellectual disability, distinctive craniofacial features, structural brain abnormalities, seizures, microcephaly, hearing loss, and ocular colobomas. The first three cases were described in 1988 by Baraitser and Winter and included two siblings and an unrelated third patient. Subsequently, causative missense variants in the ACTB and ACTG1 genes were identified, with de novo occurrence in patients with the condition. Herein, we describe two adult siblings who were born to unaffected parents and who were diagnosed with BWCS in their fourth and sixth decade of life following exome sequencing performed for intellectual disability. We review the literature reports of adult patients with BWCS to document the clinical features and phenotypic variability that can occur later in life. This is the first molecularly confirmed report of germline mosaicism in BWCS and one of only a few reports to describe two BWCS patients belonging to the same family.
Collapse
Affiliation(s)
- Karly Hampshire
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Pierre-Marie Martin
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Colleen Carlston
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
13
|
Parker F, Baboolal TG, Peckham M. Actin Mutations and Their Role in Disease. Int J Mol Sci 2020; 21:ijms21093371. [PMID: 32397632 PMCID: PMC7247010 DOI: 10.3390/ijms21093371] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Actin is a widely expressed protein found in almost all eukaryotic cells. In humans, there are six different genes, which encode specific actin isoforms. Disease-causing mutations have been described for each of these, most of which are missense. Analysis of the position of the resulting mutated residues in the protein reveals mutational hotspots. Many of these occur in regions important for actin polymerization. We briefly discuss the challenges in characterizing the effects of these actin mutations, with a focus on cardiac actin mutations.
Collapse
|
14
|
Lee S, Chen DY, Zaki MS, Maroofian R, Houlden H, Di Donato N, Abdin D, Morsy H, Mirzaa GM, Dobyns WB, McEvoy-Venneri J, Stanley V, James KN, Mancini GM, Schot R, Kalayci T, Altunoglu U, Karimiani EG, Brick L, Kozenko M, Jamshidi Y, Manzini MC, Beiraghi Toosi M, Gleeson JG. Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly, Subcortical Heterotopia, and Global Developmental Delay. Am J Hum Genet 2019; 105:844-853. [PMID: 31585108 DOI: 10.1016/j.ajhg.2019.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.
Collapse
|
15
|
Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, Lu Y, Yanagishita T, Shimada S, Chong PF, Kira R, Ueda R, Ishiyama A, Takeshita E, Momosaki K, Ozasa S, Akiyama T, Kobayashi K, Oomatsu H, Kitahara H, Yamaguchi T, Imai K, Kurahashi H, Okumura A, Oguni H, Seto T, Okamoto N. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev 2019; 41:776-782. [PMID: 31171384 DOI: 10.1016/j.braindev.2019.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recently, many genes related to neurodevelopmental disorders have been identified by high-throughput genomic analysis; however, a comprehensive understanding of the mechanism underlying neurodevelopmental disorders remains to be established. To further understand these underlying mechanisms, we performed a comprehensive genomic analysis of patients with undiagnosed neurodevelopmental disorders. METHODS Genomic analysis using next-generation sequencing with a targeted panel was performed for a total of 133 Japanese patients (male/female, 81/52) with previously undiagnosed neurodevelopmental disorders, including developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD), and epilepsy. Genomic copy numbers were also analyzed using the eXome Hidden Markov Model (XHMM). RESULTS Thirty-nine patients (29.3%) exhibited pathogenic or likely pathogenic findings with single-gene variants or chromosomal aberrations. Among them, 20 patients were presented here. Pathogenic or likely pathogenic variants were identified in 18 genes, including ACTG1, CACNA1A, CHD2, CDKL5, DNMT3A, EHMT1, GABRB3, GABRG2, GRIN2B, KCNQ3, KDM5C, MED13L, SCN2A, SHANK3, SMARCA2, STXBP1, SYNGAP1, and TBL1XR1. CONCLUSION A diagnostic yield of 29.3% in this study was nearly the same as that previously reported from other countries. Thus, we suggest that there is no difference in genomic backgrounds in Japanese patients with undiagnosed neurodevelopmental disabilities. Although most of the patients possessed de novo variants, one of the patients showed an X-linked inheritance pattern. As X-linked recessive disorders exhibit the possibility of recurrent occurrence in the family, comprehensive molecular diagnosis is important for genetic counseling.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan.
| | - Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, St. Mariannna University School of Medicine, Kawasaki, Japan
| | - Keiko Yamamoto-Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, Japan
| | - Yongping Lu
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Shino Shimada
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Riyo Ueda
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ken Momosaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Ozasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroo Oomatsu
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Hikaru Kitahara
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Tokito Yamaguchi
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Katsumi Imai
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | | | - Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Hirokazu Oguni
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Seto
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
16
|
Di Donato N, Timms AE, Aldinger KA, Mirzaa GM, Bennett JT, Collins S, Olds C, Mei D, Chiari S, Carvill G, Myers CT, Rivière JB, Zaki MS, Gleeson JG, Rump A, Conti V, Parrini E, Ross ME, Ledbetter DH, Guerrini R, Dobyns WB. Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet Med 2018; 20:1354-1364. [PMID: 29671837 PMCID: PMC6195491 DOI: 10.1038/gim.2018.8] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To estimate diagnostic yield and genotype-phenotype correlations in a cohort of 811 patients with lissencephaly or subcortical band heterotopia. METHODS We collected DNA from 756 children with lissencephaly over 30 years. Many were tested for deletion 17p13.3 and mutations of LIS1, DCX, and ARX, but few other genes. Among those tested, 216 remained unsolved and were tested by a targeted panel of 17 genes (ACTB, ACTG1, ARX, CRADD, DCX, LIS1, TUBA1A, TUBA8, TUBB2B, TUBB, TUBB3, TUBG1, KIF2A, KIF5C, DYNC1H1, RELN, and VLDLR) or by whole-exome sequencing. Fifty-five patients studied at another institution were added as a validation cohort. RESULTS The overall mutation frequency in the entire cohort was 81%. LIS1 accounted for 40% of patients, followed by DCX (23%), TUBA1A (5%), and DYNC1H1 (3%). Other genes accounted for 1% or less of patients. Nineteen percent remained unsolved, which suggests that several additional genes remain to be discovered. The majority of unsolved patients had posterior pachygyria, subcortical band heterotopia, or mild frontal pachygyria. CONCLUSION The brain-imaging pattern correlates with mutations in single lissencephaly-associated genes, as well as in biological pathways. We propose the first LIS classification system based on the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - James T Bennett
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carissa Olds
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Excellence Centre, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Sara Chiari
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Excellence Centre, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Gemma Carvill
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Candace T Myers
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jean-Baptiste Rivière
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Andreas Rump
- Institute for Clinical Genetics, TU Dresden, Dresden, Germany
| | - Valerio Conti
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Excellence Centre, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Excellence Centre, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - M Elizabeth Ross
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York, USA
| | | | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Excellence Centre, A. Meyer Children's Hospital, University of Florence, Florence, Italy
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.
- Department of Pediatrics, University of Washington, Seattle, Washington, USA.
- Department of Neurology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
17
|
Abstract
PURPOSE Baraitser-Winter cerebrofrontofacial syndrome (BWCFF) is a rare autosomal dominant genetic disorder involving multiple organ systems and primarily characterized by structural brain abnormalities and a distinctive facial appearance. METHODS To study the clinical characteristics, gene types and seizures of BWCFF. The natural history, clinical data and peripheral blood sample were collected in the child and his patients. To screen the β-actin gene (ACTB) of a newly diagnosed child, hoping to find the gene mutation. RESULTS The child had left ptosis, ocular hypertelorism, arched eyebrows, only 30% of the left ear hearing, a slight hypotonia, normal muscle strength, walking instability. The seizures were difficult to control with antiepileptic drugs and presented some degree of psychomotor development delay. Genetic screening showed De Novo in ACTB gene (c.484A> G, p.Thr162Ala). Parents did not detect related gene mutations. CONCLUSIONS Patients with typical facial features and cerebral cortical malformations associated with refractory epilepsy should be highly suspected BWCFF. Patients are advised to carry out genetic screening to confirm the diagnosis.
Collapse
Affiliation(s)
- Ying Sun
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| | - Xuehua Shen
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| | - Qiubo Li
- b Department of Pediatric , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| | - Qingxia Kong
- a Department of Neurology , Affiliated Hospital of Jining Medical University , Jining City , Shandong Province , China
| |
Collapse
|
18
|
Tan AP, Chong WK, Mankad K. Comprehensive genotype-phenotype correlation in lissencephaly. Quant Imaging Med Surg 2018; 8:673-693. [PMID: 30211035 DOI: 10.21037/qims.2018.08.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malformations of cortical development (MCD) are a heterogenous group of disorders with diverse genotypic and phenotypic variations. Lissencephaly is a subtype of MCD caused by defect in neuronal migration, which occurs between 12 and 24 weeks of gestation. The continuous advancement in the field of molecular genetics in the last decade has led to identification of at least 19 lissencephaly-related genes, most of which are related to microtubule structural proteins (tubulin) or microtubule-associated proteins (MAPs). The aim of this review article is to bring together current knowledge of gene mutations associated with lissencephaly and to provide a comprehensive genotype-phenotype correlation. Illustrative cases will be presented to facilitate the understanding of the described genotype-phenotype correlation.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Wui Khean Chong
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Lee CG, Jang J, Jin HS. A novel missense mutation in the ACTG1 gene in a family with congenital autosomal dominant deafness: A case report. Mol Med Rep 2018; 17:7611-7617. [PMID: 29620237 PMCID: PMC5983957 DOI: 10.3892/mmr.2018.8837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
The ACTG1 gene encodes the cytoskeletal protein γ-actin, which functions in non-muscle cells and is abundant in the auditory hair cells of the cochlea. Autosomal dominant missense mutations in ACTG1 are associated with DFNA20/26, a disorder that is typically characterized by post-lingual progressive hearing loss. To date, 17 missense mutations in ACTG1 have been reported in 20 families with DFNA20/26. The present study described a small family with autosomal dominant nonsyndromic hearing loss. A novel heterozygous missense mutation, c.94C>T (p.Pro32Ser), in ACTG1 was identified using the TruSight One sequencing panel. Notably, congenital hearing loss in our proband was identified by newborn hearing screening at birth. In silico predictions of protein structure and function indicate that the p.Pro32Ser mutation may result in conformational changes in γ-actin. The present study expands the understanding of the phenotypic effects of heterozygous missense mutations in the ACTG1 gene. In specific, the present results emphasize that mutations in ACTG1 result in a diverse spectrum of onset ages, including congenital in addition to post-lingual onset.
Collapse
Affiliation(s)
- Cha Gon Lee
- Division of Child Neurology, Department of Pediatrics, Nowon Eulji Medical Center, Eulji University, Seoul 01830, Republic of Korea
| | - Jahyeon Jang
- Green Cross Genome, Yongin, Gyeonggi 16924, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungcheongnam 31499, Republic of Korea
| |
Collapse
|
20
|
Baux D, Vaché C, Blanchet C, Willems M, Baudoin C, Moclyn M, Faugère V, Touraine R, Isidor B, Dupin-Deguine D, Nizon M, Vincent M, Mercier S, Calais C, García-García G, Azher Z, Lambert L, Perdomo-Trujillo Y, Giuliano F, Claustres M, Koenig M, Mondain M, Roux AF. Combined genetic approaches yield a 48% diagnostic rate in a large cohort of French hearing-impaired patients. Sci Rep 2017; 7:16783. [PMID: 29196752 PMCID: PMC5711943 DOI: 10.1038/s41598-017-16846-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022] Open
Abstract
Hearing loss is the most common sensory disorder and because of its high genetic heterogeneity, implementation of Massively Parallel Sequencing (MPS) in diagnostic laboratories is greatly improving the possibilities of offering optimal care to patients. We present the results of a two-year period of molecular diagnosis that included 207 French families referred for non-syndromic hearing loss. Our multi-step strategy involved (i) DFNB1 locus analysis, (ii) MPS of 74 genes, and (iii) additional approaches including Copy Number Variations, in silico analyses, minigene studies coupled when appropriate with complete gene sequencing, and a specific assay for STRC. This comprehensive screening yielded an overall diagnostic rate of 48%, equally distributed between DFNB1 (24%) and the other genes (24%). Pathogenic genotypes were identified in 19 different genes, with a high prevalence of GJB2, STRC, MYO15A, OTOF, TMC1, MYO7A and USH2A. Involvement of an Usher gene was reported in 16% of the genotyped cohort. Four de novo variants were identified. This study highlights the need to develop several molecular approaches for efficient molecular diagnosis of hearing loss, as this is crucial for genetic counselling, audiological rehabilitation and the detection of syndromic forms.
Collapse
Affiliation(s)
- D Baux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Vaché
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Blanchet
- Service ORL, CHU Montpellier, Montpellier, France.,Centre National de Référence Maladies Rares "Affections Sensorielles Génétiques", CHU Montpellier, Montpellier, France
| | - M Willems
- Génétique Médicale, CHU Montpellier, Montpellier, France
| | - C Baudoin
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - M Moclyn
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - V Faugère
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - R Touraine
- Service de Génétique, CHU-Hôpital Nord, Saint-Etienne, France
| | - B Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - D Dupin-Deguine
- Service de Génétique Médicale, CHU Toulouse, Toulouse, France.,Service d'ORL, Otoneurologie et ORL pédiatrique CHU Toulouse, Toulouse, France
| | - M Nizon
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - M Vincent
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - S Mercier
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - C Calais
- Service d'ORL, CHU Nantes, Nantes, France
| | - G García-García
- Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - Z Azher
- Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - L Lambert
- Génétique Médicale, Centre de Compétence des Surdités Génétiques, site constitutif du Centre de Référence des Anomalies du Développement et Syndromes Malformatifs de l'Est, CHRU Nancy, Nancy, France
| | - Y Perdomo-Trujillo
- Service de Génétique Médicale, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil, Strasbourg, France
| | - F Giuliano
- Service de Génétique Médicale, CHU Nice, Nice, France
| | - M Claustres
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France.,Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - M Koenig
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France.,Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - M Mondain
- Service ORL, CHU Montpellier, Montpellier, France.,Centre National de Référence Maladies Rares "Affections Sensorielles Génétiques", CHU Montpellier, Montpellier, France
| | - A F Roux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France. .,Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France.
| |
Collapse
|
21
|
Rall N, Leon A, Gomez R, Daroca J, Lacassie Y. New ocular finding in Baraitser-Winter syndrome (BWS). Eur J Med Genet 2017; 61:21-23. [PMID: 29024830 DOI: 10.1016/j.ejmg.2017.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/28/2017] [Accepted: 10/07/2017] [Indexed: 11/30/2022]
Abstract
Baraitser-Winter syndrome was first described as a syndrome of iris coloboma, ptosis, hypertelorism, and mental retardation (Baraitser and Winter 1988; Baraitser, 2016). The phenotypic spectrum has since broadened to include other facial dysmorphic features, deafness, microcephaly, lissencephaly, and CNS findings (Baraitser and Winter 1988; Ganesh et al., 2005; Henedy et al., 2010; Verloes et al., 2015). The syndrome is due to pathogenic variants on either ACTB or ACTG1 genes (Di Donato et al., 2014; Rivière et al., 2012). There is still discussion which gene variant produces a more severe phenotype (Di Donato et al., 2016; Di Donato et al., 2014; Verloes et al., 2015). We report a 3-year-old girl with short stature, mild global developmental delay, minor brain anomalies and few dysmorphic features including unusual stroma of the irises and unreported corectopia. Exome sequencing reported a de novo likely pathogenic variant on the ACTB gene. The present report adds a new ocular finding to the phenotypic spectrum.
Collapse
Affiliation(s)
- Natalie Rall
- Volunteer Children's Hospital, New Orleans, LA, USA
| | - Alejandro Leon
- Department of Ophthalmology Children's Hospital, New Orleans, LA, USA
| | - Ricardo Gomez
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, LA, USA
| | | | - Yves Lacassie
- Department of Pediatrics, LSU Health Sciences Center and Children's Hospital, New Orleans, LA, USA.
| |
Collapse
|
22
|
Di Donato N, Chiari S, Mirzaa GM, Aldinger K, Parrini E, Olds C, Barkovich AJ, Guerrini R, Dobyns WB. Lissencephaly: Expanded imaging and clinical classification. Am J Med Genet A 2017; 173:1473-1488. [PMID: 28440899 DOI: 10.1002/ajmg.a.38245] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Lissencephaly ("smooth brain," LIS) is a malformation of cortical development associated with deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. The LIS spectrum includes agyria, pachygyria, and subcortical band heterotopia. Our first classification of LIS and subcortical band heterotopia (SBH) was developed to distinguish between the first two genetic causes of LIS-LIS1 (PAFAH1B1) and DCX. However, progress in molecular genetics has led to identification of 19 LIS-associated genes, leaving the existing classification system insufficient to distinguish the increasingly diverse patterns of LIS. To address this challenge, we reviewed clinical, imaging and molecular data on 188 patients with LIS-SBH ascertained during the last 5 years, and reviewed selected archival data on another ∼1,400 patients. Using these data plus published reports, we constructed a new imaging based classification system with 21 recognizable patterns that reliably predict the most likely causative genes. These patterns do not correlate consistently with the clinical outcome, leading us to also develop a new scale useful for predicting clinical severity and outcome. Taken together, our work provides new tools that should prove useful for clinical management and genetic counselling of patients with LIS-SBH (imaging and severity based classifications), and guidance for prioritizing and interpreting genetic testing results (imaging based- classification).
Collapse
Affiliation(s)
- Nataliya Di Donato
- Institute for Clinical Genetics, Tu Dresden, Dresden, Germany.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Sara Chiari
- Paediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital, Florence, Italy
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics (Genetics), University of Washington, Seattle, Washington
| | - Kimberly Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Elena Parrini
- Paediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital, Florence, Italy
| | - Carissa Olds
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Renzo Guerrini
- Paediatric Neurology and Neurogenetics Unit and Laboratories, A. Meyer Children's Hospital, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Pediatrics (Genetics), University of Washington, Seattle, Washington.,Department of Neurology, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Climans SA, Mirsattari SM. Generalized epilepsy in Baraitser-Winter cerebrofrontofacial syndrome. EPILEPSY & BEHAVIOR CASE REPORTS 2017; 7:58-60. [PMID: 28413780 PMCID: PMC5385583 DOI: 10.1016/j.ebcr.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 11/28/2022]
Abstract
Baraitser–Winter cerebrofrontofacial syndrome (BWMS) is caused by actin gene mutations. Key features of BWMS are ptosis, hypertelorism, iris colobomata, and mental retardation. Generalized epilepsy is seen in half of those with BWMS. Seizures in BWMS can be absence, myoclonic, tonic, or tonic–clonic.
Collapse
Affiliation(s)
- Seth Andrew Climans
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, The University of Western Ontario, London, Canada.,Department of Medical Imaging, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada.,Department of Psychology, The University of Western Ontario, London, Canada
| |
Collapse
|
24
|
Cianci P, Fazio G, Casagranda S, Spinelli M, Rizzari C, Cazzaniga G, Selicorni A. Acute myeloid leukemia in Baraitser-Winter cerebrofrontofacial syndrome. Am J Med Genet A 2016; 173:546-549. [DOI: 10.1002/ajmg.a.38057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Cianci
- Clinical Genetic Pediatric Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
- Pediatric Department; University of Insubria, Filippo Del Ponte Hospital; Varese Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Sara Casagranda
- Pediatric Hematology-Oncology Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Marco Spinelli
- Pediatric Hematology-Oncology Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
| | - Angelo Selicorni
- Clinical Genetic Pediatric Unit, Pediatric Department of MBBM Foundation; S. Gerardo Hospital; Monza Italy
- Pediatric Unit; ASST Lariana; Como Italy
| |
Collapse
|