1
|
Takahashi Y, Date H, Oi H, Adachi T, Imanishi N, Kimura E, Takizawa H, Kosugi S, Matsumoto N, Kosaki K, Matsubara Y, Mizusawa H. Six years' accomplishment of the Initiative on Rare and Undiagnosed Diseases: nationwide project in Japan to discover causes, mechanisms, and cures. J Hum Genet 2022; 67:505-513. [PMID: 35318459 PMCID: PMC9402437 DOI: 10.1038/s10038-022-01025-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
The identification of causative genetic variants for hereditary diseases has revolutionized clinical medicine and an extensive collaborative framework with international cooperation has become a global trend to understand rare disorders. The Initiative on Rare and Undiagnosed Diseases (IRUD) was established in Japan to provide accurate diagnosis, discover causes, and ultimately provide cures for rare and undiagnosed diseases. The fundamental IRUD system consists of three pillars: IRUD diagnostic coordination, analysis centers (IRUD-ACs), and a data center (IRUD-DC). IRUD diagnostic coordination consists of clinical centers (IRUD-CLs) and clinical specialty subgroups (IRUD-CSSs). In addition, the IRUD coordinating center (IRUD-CC) manages the entire IRUD system and temporarily operates the IRUD resource center (IRUD-RC). By the end of March 2021, 6301 pedigrees consisting of 18,136 individuals were registered in the IRUD. The whole-exome sequencing method was completed in 5136 pedigrees, and a final diagnosis was established in 2247 pedigrees (43.8%). The total number of aberrated genes and pathogenic variants was 657 and 1718, among which 1113 (64.8%) were novel. In addition, 39 novel disease entities or phenotypes with 41 aberrated genes were identified. The 6-year endeavor of IRUD has been an overwhelming success, establishing an all-Japan comprehensive diagnostic and research system covering all geographic areas and clinical specialties/subspecialties. IRUD has accurately diagnosed diseases, identified novel aberrated genes or disease entities, discovered many candidate genes, and enriched phenotypic and pathogenic variant databases. Further promotion of the IRUD is essential for determining causes and developing cures for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hidetoshi Date
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hideki Oi
- Department of Clinical Data Science, Clinical Research and Education Promotion Division, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takeya Adachi
- Keio Frontier Research & Education Collaborative Square (K-FRECS) at Tonomachi, Keio University, Kawasaki, Japan.,Department of Medical Regulatory Science, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Noriaki Imanishi
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - En Kimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Astellas Pharma Incorporated, Tokyo, Japan
| | - Hotake Takizawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Shinji Kosugi
- Department of Medical Ethics/Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.
| |
Collapse
|
2
|
Rajabi F, Abdollahimajd F, Jabalameli N, Nassiri Kashani M, Firooz A. The Immunogenetics of Alopecia areata. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:19-59. [DOI: 10.1007/978-3-030-92616-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, Aoi H, Azuma Y, Itai T, Saida K, Fukuda H, Sekiguchi F, Sakaguchi T, Lei M, Ohori S, Sakamoto M, Kato M, Koike T, Takahashi Y, Tanda K, Hyodo Y, Honjo RS, Bertola DR, Kim CA, Goto M, Okazaki T, Yamada H, Maegaki Y, Osaka H, Ngu LH, Siew CG, Teik KW, Akasaka M, Doi H, Tanaka F, Goto T, Guo L, Ikegawa S, Haginoya K, Haniffa M, Hiraishi N, Hiraki Y, Ikemoto S, Daida A, Hamano SI, Miura M, Ishiyama A, Kawano O, Kondo A, Matsumoto H, Okamoto N, Okanishi T, Oyoshi Y, Takeshita E, Suzuki T, Ogawa Y, Handa H, Miyazono Y, Koshimizu E, Fujita A, Takata A, Miyake N, Mizuguchi T, Matsumoto N. Efficient detection of copy-number variations using exome data: Batch- and sex-based analyses. Hum Mutat 2020; 42:50-65. [PMID: 33131168 DOI: 10.1002/humu.24129] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
Collapse
Affiliation(s)
- Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Aoi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Sakaguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ming Lei
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Takayoshi Koike
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Koichi Tanda
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Yuki Hyodo
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Rachel S Honjo
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Masahide Goto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Tetsuya Okazaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Yamada
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshihiro Maegaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Lock-Hock Ngu
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Ch'ng G Siew
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Keng W Teik
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Manami Akasaka
- Department of Pediatrics, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohide Goto
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Muzhirah Haniffa
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Nozomi Hiraishi
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Satoru Ikemoto
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Masaki Miura
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Pediatrics, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Osamu Kawano
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Akane Kondo
- Clinical Genetics Center, Shikoku Medical Center for Children and Adults, National Hospital Organization, Kagawa, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tohru Okanishi
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan.,Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yukimi Oyoshi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiyuki Ogawa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yayoi Miyazono
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
4
|
Sato A, Suzuki T, Ikeno M, Takeda J, Yamamoto Y, Shinohara M, Makino S, Takeda S, Shimizu T, Itakura A. Pure 9p duplication syndrome with aplasia of the middle phalanges of the fifth fingers. Eur J Med Genet 2020; 63:104005. [PMID: 32693209 DOI: 10.1016/j.ejmg.2020.104005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/12/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
9p duplication syndrome is a common congenital anomaly syndrome with specific facial features, mental and developmental retardations, and characteristic fingers. Pure 9p duplication without other chromosomal structural variations is very rare. It has recently been reported that cases with partial 9p duplication including SMARCA2 have phenotypes overlapping with Coffin-Siris syndrome (CSS). Herein, we present a family with pure 9p duplication syndrome in which phenotypes partially characteristic of CSS were identified. In one of two siblings, X-ray examination revealed hypoplasia of the distal phalanges of the fifth fingers, aplasia of the middle phalanges of the fifth fingers, and aplasia of the distal phalanges of the second to fifth toes. In pure 9p duplication together with our one affected case, 9 out of 14 cases (64.3%), excluding cases whose clinical data were unavailable, presented the absence or hypoplasia of the middle phalanges of fingers or toes. Interestingly, there are no reports on CSS with aplasia or hypoplasia of the middle phalanx. Therefore, this family might suggest that the aplasia or hypoplasia of the middle phalanges of the fifth fingers or toes is a distinct finding that can distinguish between pure 9p duplication and CSS.
Collapse
Affiliation(s)
- Anna Sato
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan; Department of Obstetrics and Gynecology, Keiai Hospital, Saitama, Japan.
| | - Mitsuru Ikeno
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jun Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuka Yamamoto
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mitsuko Shinohara
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shintaro Makino
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan; Aiiku Research Institute for Maternal, Child Health and Welfare, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Sekiguchi F, Tsurusaki Y, Okamoto N, Teik KW, Mizuno S, Suzumura H, Isidor B, Ong WP, Haniffa M, White SM, Matsuo M, Saito K, Phadke S, Kosho T, Yap P, Goyal M, Clarke LA, Sachdev R, McGillivray G, Leventer RJ, Patel C, Yamagata T, Osaka H, Hisaeda Y, Ohashi H, Shimizu K, Nagasaki K, Hamada J, Dateki S, Sato T, Chinen Y, Awaya T, Kato T, Iwanaga K, Kawai M, Matsuoka T, Shimoji Y, Tan TY, Kapoor S, Gregersen N, Rossi M, Marie-Laure M, McGregor L, Oishi K, Mehta L, Gillies G, Lockhart PJ, Pope K, Shukla A, Girisha KM, Abdel-Salam GMH, Mowat D, Coman D, Kim OH, Cordier MP, Gibson K, Milunsky J, Liebelt J, Cox H, El Chehadeh S, Toutain A, Saida K, Aoi H, Minase G, Tsuchida N, Iwama K, Uchiyama Y, Suzuki T, Hamanaka K, Azuma Y, Fujita A, Imagawa E, Koshimizu E, Takata A, Mitsuhashi S, Miyatake S, Mizuguchi T, Miyake N, Matsumoto N. Genetic abnormalities in a large cohort of Coffin-Siris syndrome patients. J Hum Genet 2019; 64:1173-1186. [PMID: 31530938 DOI: 10.1038/s10038-019-0667-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 01/15/2023]
Abstract
Coffin-Siris syndrome (CSS, MIM#135900) is a congenital disorder characterized by coarse facial features, intellectual disability, and hypoplasia of the fifth digit and nails. Pathogenic variants for CSS have been found in genes encoding proteins in the BAF (BRG1-associated factor) chromatin-remodeling complex. To date, more than 150 CSS patients with pathogenic variants in nine BAF-related genes have been reported. We previously reported 71 patients of whom 39 had pathogenic variants. Since then, we have recruited an additional 182 CSS-suspected patients. We performed comprehensive genetic analysis on these 182 patients and on the previously unresolved 32 patients, targeting pathogenic single nucleotide variants, short insertions/deletions and copy number variations (CNVs). We confirmed 78 pathogenic variations in 78 patients. Pathogenic variations in ARID1B, SMARCB1, SMARCA4, ARID1A, SOX11, SMARCE1, and PHF6 were identified in 48, 8, 7, 6, 4, 1, and 1 patients, respectively. In addition, we found three CNVs including SMARCA2. Of particular note, we found a partial deletion of SMARCB1 in one CSS patient and we thoroughly investigated the resulting abnormal transcripts.
Collapse
Affiliation(s)
- Futoshi Sekiguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Kanagawa, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Keng Wee Teik
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Seiji Mizuno
- Department of Clinical Genetics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Japan
| | - Hiroshi Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | | | - Winnie Peitee Ong
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muzhirah Haniffa
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Mari Matsuo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Shubha Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Patrick Yap
- Genetic Health Service New Zealand, Auckland, New Zealand.,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Manisha Goyal
- Rare Disease Clinic, J K Lone Hospital, SMS Medical College, Jaipur, Rajasthan, India
| | - Lorne A Clarke
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Richard J Leventer
- Royal Children's Hospital Department of Neurology, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Parkville, 3052, Australia
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Yoshiya Hisaeda
- Department of Neonatology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Nagasaki
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junpei Hamada
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Sato
- Asahikawa-Kosei General Hospital, Hokkaido, Japan
| | - Yasutsugu Chinen
- Department of Child Health and Welfare, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeo Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kougoro Iwanaga
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiko Kawai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Matsuoka
- Department of General Pediatrics, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Yoshikazu Shimoji
- Department of General Pediatrics, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Seema Kapoor
- Division of Genetics, Department of Pediatrics, Maulana Azad Medical College, New Delhi, India
| | | | - Massimiliano Rossi
- Hospices Civils de Lyon, Service de Génétique, Centre de Référence Anomalies du Développement, and INSERM U1028, CNRS UMR5292, CRNL, GENDEV Team, UCBL1, Bron, France
| | - Mathieu Marie-Laure
- Hospices Civils de Lyon, Service de Génétique, Centre de Référence Anomalies du Développement, and INSERM U1028, CNRS UMR5292, CRNL, GENDEV Team, UCBL1, Bron, France
| | - Lesley McGregor
- South Australian Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi Mehta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Greta Gillies
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Kate Pope
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Victoria, Australia
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - David Mowat
- Department of Medical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - David Coman
- Department of Paediatrics, The Wesley Hospital, Brisbane, QLD, Australia
| | - Ok Hwa Kim
- Department of Radiology, Ajou University Hospital, Suwon, Korea
| | | | - Kate Gibson
- Genetic Health Service New Zealand, Christchurch Hospital, Christchurch, New Zealand
| | | | - Jan Liebelt
- South Australian Clinical Genetics Services, Women's and Children's Hospital, North Adelaide, Australia
| | - Helen Cox
- West Midlands Regional Genetics Service, Birmingham Women's NHS Foundation Trust, Birmingham Women's Hospital, Edgbaston, Birmingham, B15 2TG, UK
| | - Salima El Chehadeh
- Service de Genetique Medicale, Hopital de Hautepierre, Strasbourg, France
| | | | - Ken Saida
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Hiromi Aoi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Gaku Minase
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Toshifumi Suzuki
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Eri Imagawa
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate school of medicine, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
6
|
Pascolini G, Valiante M, Bottillo I, Laino L, Fleischer N, Ferraris A, Grammatico P. Striking phenotypic overlap between Nicolaides-Baraitser and Coffin-Siris syndromes in monozygotic twins with ARID1B intragenic deletion. Eur J Med Genet 2019; 63:103739. [PMID: 31421289 DOI: 10.1016/j.ejmg.2019.103739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/05/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022]
Abstract
The chromatin remodeling AT-Rich interaction domain containing 1B protein (ARID1B) also known as BAF-associated factor, 250-KD, B (BAF250B) codified by the ARID1B gene (MIM#614556), is a small subunit of the mammalian SWI/SNF or BAF complex, an ATP-dependent protein machinery which is able to activate or repress gene transcription, allowing protein access to histones through DNA relaxed conformation. ARID1B gene mutations have been associated with two hereditary syndromic conditions, namely Coffin-Siris (CSS, MIM#135900) and Nicolaides-Baraitser syndromes (NCBRS, MIM#601358), characterized by neurodevelopment delay, craniofacial dysmorphisms and skeletal anomalies. Furthermore, intellectual impairment and central nervous system (CNS) alterations, comprising abnormal corpus callosum, have been associated with mutations in this gene. Moreover, ARID1B anomalies resulted to be involved in neoplastic events and Hirschprung disease. Here we report on two monozygotic male twins, displaying clinical appearance strikingly resembling NCBRS and CSS phenotype, who resulted carriers of a novel 6q25.3 microdeletion, encompassing only part of the ARID1B gene. The deleted segment was not inherited from the only parent tested and afflicted the first exons of the gene, coding for protein disordered region. We also provide, for the first time, a review of previously published ARID1B mutated patients with NCBRS and CSS phenotype and a computer-assisted dysmorphology analysis of NCBRS and ARID1B related CSS individuals, through the Face2Gene suite, confirming the existence of highly overlapping facial gestalt of both conditions. The present findings indicate that ARID1B could be considered a contributing gene not only in CSS but also in NCBRS phenotype, although the main gene related to this latter condition is the SMARCA2 gene (MIM#600014), another component of the BAF complex. So, ARID1B study should be considered in such individuals.
Collapse
Affiliation(s)
- Giulia Pascolini
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Michele Valiante
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Irene Bottillo
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Luigi Laino
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Alessandro Ferraris
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Paola Grammatico
- Medical Genetics Laboratory, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
7
|
Gao F, Elliott NJ, Ho J, Sharp A, Shokhirev MN, Hargreaves DC. Heterozygous Mutations in SMARCA2 Reprogram the Enhancer Landscape by Global Retargeting of SMARCA4. Mol Cell 2019; 75:891-904.e7. [PMID: 31375262 PMCID: PMC7291823 DOI: 10.1016/j.molcel.2019.06.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Mammalian SWI/SNF complexes are multi-subunit chromatin remodeling complexes associated with an ATPase (either SMARCA4 or SMARCA2). Heterozygous mutations in the SMARCA2 ATPase cause Nicolaides-Baraitser syndrome (NCBRS), an intellectual disability syndrome associated with delayed speech onset. We engineered human embryonic stem cells (hESCs) to carry NCBRS-associated heterozygous SMARCA2 K755R or R1159Q mutations. While SMARCA2 mutant hESCs were phenotypically normal, differentiation to neural progenitors cells (NPCs) was severely impaired. We find that SMARCA2 mutations cause enhancer reorganization with loss of SOX3-dependent neural enhancers and prominent emergence of astrocyte-specific de novo enhancers. Changes in chromatin accessibility at enhancers were associated with an increase in SMARCA2 binding and retargeting of SMARCA4. We show that the AP-1 family member FRA2 is aberrantly overexpressed in SMARCA2 mutant NPCs, where it functions as a pioneer factor at de novo enhancers. Together, our results demonstrate that SMARCA2 mutations cause impaired differentiation through enhancer reprogramming via inappropriate targeting of SMARCA4.
Collapse
Affiliation(s)
- Fangjian Gao
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nicholas J Elliott
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexzander Sharp
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Entire FGF12 duplication by complex chromosomal rearrangements associated with West syndrome. J Hum Genet 2019; 64:1005-1014. [PMID: 31311986 DOI: 10.1038/s10038-019-0641-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/09/2022]
Abstract
Complex rearrangements of chromosomes 3 and 9 were found in a patient presenting with severe epilepsy, developmental delay, dysmorphic facial features, and skeletal abnormalities. Molecular cytogenetic analysis revealed 46,XX.ish der(9)(3qter→3q28::9p21.1→9p22.3::9p22.3→9qter)(RP11-368G14+,RP11-299O8-,RP11-905L2++,RP11-775E6++). Her dysmorphic features are consistent with 3q29 microduplication syndrome and inv dup del(9p). Trio-based WES of the patient revealed no pathogenic single nucleotide variants causing epilepsy, but confirmed a 3q28q29 duplication involving FGF12, which encodes fibroblast growth factor 12. FGF12 positively regulates the activity of voltage-gated sodium channels. Recently, only one recurrent gain-of-function variant [NM_021032.4:c.341G>A:p.(Arg114His)] in FGF12 was found in a total of 10 patients with severe early-onset epilepsy. We propose that the patient's entire FGF12 duplication may be analogous to the gain-of-function variant in FGF12 in the epileptic phenotype of this patient.
Collapse
|
9
|
Petukhova L, Patel AV, Rigo RK, Bian L, Verbitsky M, Sanna-Cherchi S, Erjavec SO, Abdelaziz AR, Cerise JE, Jabbari A, Christiano AM. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol 2019; 29:243-253. [PMID: 31169925 DOI: 10.1111/exd.13986] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
Alopecia areata (AA) is a highly prevalent autoimmune disease that attacks the hair follicle and leads to hair loss that can range from small patches to complete loss of scalp and body hair. Our previous linkage and genome-wide association studies (GWAS) generated strong evidence for aetiological contributions from inherited genetic variants at different population frequencies, including both rare mutations and common polymorphisms. Additionally, we conducted gene expression (GE) studies on scalp biopsies of 96 patients and controls to establish signatures of active disease. In this study, we performed an integrative analysis on these two datasets to test the hypothesis that rare CNVs in patients with AA could be leveraged to identify drivers of disease in our AA GE signatures. We analysed copy number variants (CNVs) in a case-control cohort of 673 patients with AA and 16 311 controls independent of the case-control cohort of 96 research participants used in our GE study. Using an integrative computational analysis, we identified 14 genes whose expression levels were altered by CNVs in a consistent direction of effect, corresponding to gene expression changes in lesional skin of patients. Four of these genes were affected by CNVs in three or more unrelated patients with AA, including ATG4B and SMARCA2, which are involved in autophagy and chromatin remodelling, respectively. Our findings identified new classes of genes with potential contributions to AA pathogenesis.
Collapse
Affiliation(s)
- Lynn Petukhova
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Aakash V Patel
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Rachel K Rigo
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Li Bian
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Miguel Verbitsky
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Simone Sanna-Cherchi
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Stephanie O Erjavec
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Alexa R Abdelaziz
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jane E Cerise
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ali Jabbari
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Angela M Christiano
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, New York.,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
10
|
Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenetics Chromatin 2019; 12:19. [PMID: 30898143 PMCID: PMC6427853 DOI: 10.1186/s13072-019-0264-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/13/2019] [Indexed: 01/16/2023] Open
Abstract
The ATP-dependent chromatin remodelling complex BAF (= mammalian SWI/SNF complex) is crucial for the regulation of gene expression and differentiation. In the course of evolution from yeast to mammals, the BAF complex evolved an immense complexity with a high number of subunits encoded by gene families. In this way, tissue-specific BAF function and regulation of development begin with the combinatorial assembly of distinct BAF complexes such as esBAF, npBAF and nBAF. Furthermore, whole-genome sequencing reveals the tremendous role BAF complex mutations have in both neurodevelopmental disorders and human malignancies. Therefore, gaining a more elaborate insight into how BAF complex assembly influences its function and which role distinct subunits play, will hopefully give rise to a better understanding of disease pathogenesis and ultimately to new treatments for many human diseases.
Collapse
Affiliation(s)
- Amelie Alfert
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| | - Natalia Moreno
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children’s Hospital Muenster, Domagkstraße 24, 48149 Muenster, Germany
| |
Collapse
|
11
|
Aref-Eshghi E, Bend EG, Hood RL, Schenkel LC, Carere DA, Chakrabarti R, Nagamani SCS, Cheung SW, Campeau PM, Prasad C, Siu VM, Brady L, Tarnopolsky MA, Callen DJ, Innes AM, White SM, Meschino WS, Shuen AY, Paré G, Bulman DE, Ainsworth PJ, Lin H, Rodenhiser DI, Hennekam RC, Boycott KM, Schwartz CE, Sadikovic B. BAFopathies' DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin-Siris and Nicolaides-Baraitser syndromes. Nat Commun 2018; 9:4885. [PMID: 30459321 PMCID: PMC6244416 DOI: 10.1038/s41467-018-07193-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 01/16/2023] Open
Abstract
Coffin–Siris and Nicolaides–Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening. Mutations in genes encoding subunits of the BAF complex can cause Coffin–Siris and Nicolaides–Baraitser syndromes. Here the authors identify overlapping DNA methylation signatures in individuals with subtypes of these two syndromes that suggest a functional link and can be used to diagnose subjects with unclear clinical presentations.
Collapse
Affiliation(s)
- Erfan Aref-Eshghi
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Eric G Bend
- Prevention Genetics, Marshfield, 54449, WI, USA
| | - Rebecca L Hood
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | - Laila C Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Deanna Alexis Carere
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Rana Chakrabarti
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, H3C 3J7, QC, Canada
| | - Chitra Prasad
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Victoria Mok Siu
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Lauren Brady
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - David J Callen
- Department of Pediatrics, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, T3B 6A8, AB, Canada
| | - Susan M White
- Department of Paediatrics, University of Melbourne, Melbourne, 3052, VIC, Australia
| | - Wendy S Meschino
- Genetics Program, North York General Hospital, Toronto, M2K 1E1, ON, Canada
| | - Andrew Y Shuen
- Children's Health Research Institute, London, N6A 5W9, ON, Canada
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, L8P 1A2, ON, Canada
| | - Dennis E Bulman
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | - Peter J Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - Hanxin Lin
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada.,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada
| | - David I Rodenhiser
- Children's Health Research Institute, London, N6A 5W9, ON, Canada.,Department of Pediatrics, Biochemistry and Oncology, Western University, London, N6A 5W9, ON, Canada
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, K1H 8L1, ON, Canada
| | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, N6A 5W9, ON, Canada. .,Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, London, N6A 5W9, ON, Canada.
| |
Collapse
|
12
|
Tsuchida N, Nakashima M, Kato M, Heyman E, Inui T, Haginoya K, Watanabe S, Chiyonobu T, Morimoto M, Ohta M, Kumakura A, Kubota M, Kumagai Y, Hamano SI, Lourenco CM, Yahaya NA, Ch'ng GS, Ngu LH, Fattal-Valevski A, Weisz Hubshman M, Orenstein N, Marom D, Cohen L, Goldberg-Stern H, Uchiyama Y, Imagawa E, Mizuguchi T, Takata A, Miyake N, Nakajima H, Saitsu H, Miyatake S, Matsumoto N. Detection of copy number variations in epilepsy using exome data. Clin Genet 2018; 93:577-587. [PMID: 28940419 DOI: 10.1111/cge.13144] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 12/14/2022]
Abstract
Epilepsies are common neurological disorders and genetic factors contribute to their pathogenesis. Copy number variations (CNVs) are increasingly recognized as an important etiology of many human diseases including epilepsy. Whole-exome sequencing (WES) is becoming a standard tool for detecting pathogenic mutations and has recently been applied to detecting CNVs. Here, we analyzed 294 families with epilepsy using WES, and focused on 168 families with no causative single nucleotide variants in known epilepsy-associated genes to further validate CNVs using 2 different CNV detection tools using WES data. We confirmed 18 pathogenic CNVs, and 2 deletions and 2 duplications at chr15q11.2 of clinically unknown significance. Of note, we were able to identify small CNVs less than 10 kb in size, which might be difficult to detect by conventional microarray. We revealed 2 cases with pathogenic CNVs that one of the 2 CNV detection tools failed to find, suggesting that using different CNV tools is recommended to increase diagnostic yield. Considering a relatively high discovery rate of CNVs (18 out of 168 families, 10.7%) and successful detection of CNV with <10 kb in size, CNV detection by WES may be able to surrogate, or at least complement, conventional microarray analysis.
Collapse
Affiliation(s)
- N Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - M Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - M Kato
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan.,Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - E Heyman
- Pediatric Neurology Department Pediatric Epilepsy Service, Assaf Harofeh Medical Center, Zerifin, Israel
| | - T Inui
- Department of Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - K Haginoya
- Department of Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - S Watanabe
- Department of Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - T Chiyonobu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - M Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - M Ohta
- Department of Pediatrics, JA Toride General Hospital, Toride, Ibaraki, Japan
| | - A Kumakura
- Department of Pediatrics, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - M Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Y Kumagai
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - S-I Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - C M Lourenco
- Neurogenetics Unit, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - N A Yahaya
- Hospital Raja Perempuan Zainab II, Kota Bharu, Malaysia
| | - G-S Ch'ng
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - L-H Ngu
- Genetic Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - A Fattal-Valevski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Neurology Unit, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - M Weisz Hubshman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetics Institute, Rabin Medical Center, Petach Tikva, Israel
| | - N Orenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - D Marom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Pediatrics A, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - L Cohen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - H Goldberg-Stern
- Epilepsy Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Y Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - E Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - T Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - A Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - N Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - S Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
13
|
Sokpor G, Xie Y, Rosenbusch J, Tuoc T. Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders. Front Mol Neurosci 2017; 10:243. [PMID: 28824374 PMCID: PMC5540894 DOI: 10.3389/fnmol.2017.00243] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Yuanbin Xie
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University GoettingenGoettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the BrainGoettingen, Germany
| |
Collapse
|