1
|
Smith T, Knudsen KJ, Ritchie SA. A novel inducible animal model for studying chronic plasmalogen deficiency associated with Alzheimer's disease. Brain Res 2024; 1843:149132. [PMID: 39053687 DOI: 10.1016/j.brainres.2024.149132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Plasmalogens are vinyl-ether glycerophospholipids critical for the structure and function of neuronal membranes. Deficient plasmalogen levels are associated with neurodegenerative diseases, particularly Alzheimer's disease (AD), which has led to the hypothesis that plasmalogen deficiency might drive disease onset and progression. However, the lack of a suitable animal model with late-onset plasmalogen deficiency has prevented testing of this hypothesis. The goal of this project was therefore to develop and characterize a mouse model capable of undergoing a plasmalogen deficiency only in adulthood, mirroring the chronic decline thought to occur in AD. We report here the creation of a novel animal model containing a tamoxifen-inducible knockout of the Gnpat gene encoding the first step in the plasmalogen biosynthetic pathway. Tamoxifen treatment in adult animals resulted in a significant reduction of plasmalogens in both the circulation and tissues as early as four weeks. By four months, changes in behavior and nerve function were observed, with strong correlations between residual brain plasmalogen levels, hyperactivity, and latency. The model will be useful for further elucidating the role of plasmalogens in AD and evaluating plasmalogen therapies.
Collapse
Affiliation(s)
- Tara Smith
- Med-Life Discoveries LP, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
2
|
Hyer LC, Shull ER, Fray B, Westberry DE. Growth Charts for Children With Arthrogryposis Multiplex Congenita. Clin Pediatr (Phila) 2024; 63:541-550. [PMID: 37382242 DOI: 10.1177/00099228231182823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Children with arthrogryposis multiplex congenita (AMC) often demonstrate growth differences compared with typically developing (TD) children. However, growth charts have not been developed for this population. The purpose of this study was to create AMC-specific growth charts and to compare these values to those of TD children. A retrospective review of height/length and weight for 206 children with AMC was performed. Growth charts were developed and stratified over seven percentiles; these were then compared with growth charts of TD children. Children with AMC tend to be smaller in stature and weight compared with TD children, particularly in the first 36 months of life. Thereafter, weight values trend toward the 50th percentile of TD children, but height/length values persist around the 5th percentile of TD children. The development of AMC-specific growth charts provides health care providers an objective tool to evaluate growth patterns of patients with AMC.
Collapse
Affiliation(s)
- Lauren C Hyer
- Department of Orthopedics, Shriners Children's Greenville, Greenville, SC, USA
| | - Emily R Shull
- Department of Orthopedics, Shriners Children's Greenville, Greenville, SC, USA
| | - Bob Fray
- Furman University, Greenville, SC, USA
| | - David E Westberry
- Department of Orthopedics, Shriners Children's Greenville, Greenville, SC, USA
| |
Collapse
|
3
|
Billich N, O'Brien K, Fredwall SO, Lee M, Savarirayan R, Davidson ZE. A scoping review of nutrition issues and management strategies in individuals with skeletal dysplasia. Genet Med 2023; 25:100920. [PMID: 37330695 DOI: 10.1016/j.gim.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
PURPOSE Skeletal dysplasia are heterogeneous conditions affecting the skeleton. Common nutrition issues include feeding difficulties, obesity, and metabolic complications. This systematic scoping review aimed to identify key nutrition issues, management strategies, and gaps in knowledge regarding nutrition in skeletal dysplasia. METHODS The databases Ovid MEDLINE, Ovid EMBASE, Ebsco CINAHL, Scopus, and Cochrane Central Register of Controlled Trials and Database of Systematic Reviews were searched. Reference lists and citing literature for included studies were searched. Eligible studies included participants with skeletal dysplasia and described: anthropometry, body composition, nutrition-related biochemistry, clinical issues, dietary intake, measured energy or nutrition requirements, or nutrition interventions. RESULTS The literature search identified 8509 references from which 138 studies were included (130 observational, 3 intervention, 2 systematic reviews, and 3 clinical guidelines). Across 17 diagnoses identified, most studies described osteogenesis imperfecta (n = 50) and achondroplasia or hypochondroplasia (n = 47). Nutrition-related clinical issues, biochemistry, obesity, and metabolic complications were most commonly reported, and few studies measured energy requirements (n = 5). CONCLUSION Nutrition-related comorbidities are documented in skeletal dysplasia; yet, evidence to guide management is scarce. Evidence describing nutrition in rarer skeletal dysplasia conditions is lacking. Advances in skeletal dysplasia nutrition knowledge is needed to optimize broader health outcomes.
Collapse
Affiliation(s)
- Natassja Billich
- Murdoch Children's Research Institute, Parkville, VIC, Australia; The University of Queensland, St Lucia, QLD, Australia.
| | - Katie O'Brien
- Royal Children's Hospital, Parkville, VIC, Australia; Monash University, Clayton, VIC, Australia
| | - Svein O Fredwall
- Murdoch Children's Research Institute, Parkville, VIC, Australia; TRS National Resource Centre for Rare Disorders, Sunnaas Rehabiliation Hospital, Nesodden, Norway
| | | | - Ravi Savarirayan
- Murdoch Children's Research Institute, Parkville, VIC, Australia; University of Melbourne, Parkville, VIC, Australia
| | - Zoe E Davidson
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Sayed J, Gamal A, Theyab A, Algahtani M, Aldaadi BB. Neonatal rhizomelic chondrodysplasia punctata type 2 caused by a novel homozygous variant in the GNPAT gene. Clin Case Rep 2023; 11:e7504. [PMID: 37323250 PMCID: PMC10264737 DOI: 10.1002/ccr3.7504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a rare disorder (~1 in 100,000 live births) of faulty plasmalogen biosynthesis and defective peroxisomal metabolism. RCDP type 2 is specifically caused by glyceronephosphate O-acyltransferase (GNPAT) gene mutations and is inherited as an autosomal recessive trait. The disorder is characterized by skeletal abnormalities, distinctive facial features, intellectual disability, and respiratory distress. The case report describes a newborn baby with a dysmorphic facial appearance and skeletal abnormalities who was admitted to neonatal intensive care with respiratory distress. His parents were first cousins. The whole exome sequencing for this patient identified an interesting homozygous variant in the GNPAT gene [GNPAT (NM_014236.4):c.1602+1G>A (p.?), Chr1 (GRCh37):g.231408138G>A]. This case report aims to highlight the patient's clinical presentation with the variant and the whole exome sequencing, indicating the identification of a novel mutation in the GNPAT gene causing RCDP type 2.
Collapse
Affiliation(s)
- Jamal Sayed
- Security Forces Hospital Makkah (SFHM)MakahSaudi Arabia
| | - Ahmed Gamal
- College of MedicineAl‐Faisal UniversityRiyadhSaudi Arabia
| | - Abdulrahman Theyab
- College of MedicineAl‐Faisal UniversityRiyadhSaudi Arabia
- Department of Laboratory and Blood BankSecurity Forces Hospital MakkahMakahSaudi Arabia
| | - Mohamed Algahtani
- Department of Laboratory and Blood BankSecurity Forces Hospital MakkahMakahSaudi Arabia
| | | |
Collapse
|
5
|
Dorninger F, Vaz FM, Waterham HR, Klinken JBV, Zeitler G, Forss-Petter S, Berger J, Wiesinger C. Ether lipid transfer across the blood-brain and placental barriers does not improve by inactivation of the most abundant ABC transporters. Brain Res Bull 2022; 189:69-79. [PMID: 35981629 DOI: 10.1016/j.brainresbull.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022]
Abstract
Phospholipid transport from the periphery to the brain is an understudied topic. When certain lipid species are deficient due to impaired synthesis, though, transfer across the blood-brain barrier is essential for replenishing lipids in the brain. For example, the deficiency in plasmalogens, the most abundant ether lipids in mammals, has detrimental effects on the brain, which is a major issue in inherited peroxisomal disorders but also contributes to more common disorders like Alzheimer's disease. Oral administration of alkylglycerols like batyl alcohol, which carry a pre-formed ether bond, enables replenishment of ether lipids in various peripheral tissues. However, plasmalogen deficiency in the brain cannot be overcome by this approach. Here, we tried to increase cerebral plasmalogen uptake by modulating the efflux transport across the blood-brain barrier. We hypothesized, based on previous literature, that at least some ether lipid species readily enter endothelial cells of the barrier through the transporter MFSD2A but are re-exported by ATP-binding cassette (ABC) transporters. By crossbreeding Mdr1a-/-/Mdr1b-/-/Bcrp-/- and ether lipid-deficient Gnpat-/- mice as well as pharmacological inhibition with MK-571 to inactivate the major ABC transporters at the blood-brain barrier, we evaluated the potential of combined ABC transporter inhibition and oral batyl alcohol administration for the treatment of plasmalogen deficiency. We found that even in the absence of the most abundant ABC transporters, batyl alcohol supplementation did not restore plasmalogen levels in the brain, despite the presence of a wide spectrum of ether lipid subspecies in the plasma as demonstrated by lipidomic analysis. Surprisingly, batyl alcohol treatment of pregnant Gnpat+/- dams had beneficial effects on the plasmalogen levels of Gnpat-/- offspring with defective ether lipid biosynthesis, independently of ABC transporter status at the placental barrier. Our results underline the autonomy of brain lipid homeostasis and indicate that peripheral supplementation of ether lipids is not sufficient to supply the brain with larger amounts of plasmalogens. Yet, the findings suggest that alkylglycerol treatment during pregnancy may pose a viable option to ameliorate some of the severe developmental defects of inborn ether lipid deficiency.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Hans R Waterham
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| | - Jan B van Klinken
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
6
|
Smith T, Knudsen KJ, Ritchie SA. Pharmacokinetics, Mass Balance, Excretion, and Tissue Distribution of Plasmalogen Precursor PPI-1011. Front Cell Dev Biol 2022; 10:867138. [PMID: 35547803 PMCID: PMC9081329 DOI: 10.3389/fcell.2022.867138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
PPI-1011 is a synthetic plasmalogen precursor in development as a treatment for multiple plasmalogen-deficiency disorders. Previous work has demonstrated the ability of PPI-1011 to augment plasmalogens and its effects in vitro and in vivo, however, the precise uptake and distribution across tissues in vivo has not been investigated. The purpose of this study was to evaluate the pharmacokinetics, mass balance, and excretion of [14C]PPI-1011 following a single oral administration at 100 mg/kg in Sprague-Dawley rats. Further tissue distribution was examined using quantitative whole-body autoradiography after both single and repeat daily doses at 100 mg/kg/day. Non-compartmental analysis showed that following a single dose, PPI-1011 exhibited peak levels between 6 and 12 h but also a long half-life with mean t1/2 of 40 h. Mass balance showed that over 50% of the compound-associated radioactivity was absorbed by the body, while approximately 40% was excreted in the feces, 2.5% in the urine, and 10% in expired air within the first 24 h. Quantitative whole-body autoradiography following a single dose showed uptake to nearly all tissues, with the greatest initial uptake in the intestines, liver, and adipose tissue, which decreased time-dependently throughout 168 h post-dose. Following 15 consecutive daily doses, uptake was significantly higher across the entire body at 24 h compared to single dose and remained high out to 96 h where 75% of the initially-absorbed compound-associated radioactivity was still present. The adipose tissue remained particularly high, suggesting a possible reserve of either plasmalogens or alkyl diacylglycerols that the body can pull from for plasmalogen biosynthesis. Uptake to the brain was also definitively confirmed, proving PPI-1011’s ability to cross the blood-brain barrier. In conclusion, our results suggest that oral administration of PPI-1011 results in high uptake across the body, and that repeated dosing over time represents a viable therapeutic strategy for treating plasmalogen deficiencies.
Collapse
|
7
|
Thistlethwaite LR, Li X, Burrage LC, Riehle K, Hacia JG, Braverman N, Wangler MF, Miller MJ, Elsea SH, Milosavljevic A. Clinical diagnosis of metabolic disorders using untargeted metabolomic profiling and disease-specific networks learned from profiling data. Sci Rep 2022; 12:6556. [PMID: 35449147 PMCID: PMC9023513 DOI: 10.1038/s41598-022-10415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Untargeted metabolomics is a global molecular profiling technology that can be used to screen for inborn errors of metabolism (IEMs). Metabolite perturbations are evaluated based on current knowledge of specific metabolic pathway deficiencies, a manual diagnostic process that is qualitative, has limited scalability, and is not equipped to learn from accumulating clinical data. Our purpose was to improve upon manual diagnosis of IEMs in the clinic by developing novel computational methods for analyzing untargeted metabolomics data. We employed CTD, an automated computational diagnostic method that "connects the dots" between metabolite perturbations observed in individual metabolomics profiling data and modules identified in disease-specific metabolite co-perturbation networks learned from prior profiling data. We also extended CTD to calculate distances between any two individuals (CTDncd) and between an individual and a disease state (CTDdm), to provide additional network-quantified predictors for use in diagnosis. We show that across 539 plasma samples, CTD-based network-quantified measures can reproduce accurate diagnosis of 16 different IEMs, including adenylosuccinase deficiency, argininemia, argininosuccinic aciduria, aromatic L-amino acid decarboxylase deficiency, cerebral creatine deficiency syndrome type 2, citrullinemia, cobalamin biosynthesis defect, GABA-transaminase deficiency, glutaric acidemia type 1, maple syrup urine disease, methylmalonic aciduria, ornithine transcarbamylase deficiency, phenylketonuria, propionic acidemia, rhizomelic chondrodysplasia punctata, and the Zellweger spectrum disorders. Our approach can be used to supplement information from biochemical pathways and has the potential to significantly enhance the interpretation of variants of uncertain significance uncovered by exome sequencing. CTD, CTDdm, and CTDncd can serve as an essential toolset for biological interpretation of untargeted metabolomics data that overcomes limitations associated with manual diagnosis to assist diagnosticians in clinical decision-making. By automating and quantifying the interpretation of perturbation patterns, CTD can improve the speed and confidence by which clinical laboratory directors make diagnostic and treatment decisions, while automatically improving performance with new case data.
Collapse
Affiliation(s)
- Lillian R Thistlethwaite
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, One Baylor Plaza, 400D, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiqi Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Kevin Riehle
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph G Hacia
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Nancy Braverman
- Department of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Jan and Dan Duncan Texas Children's Hospital Neurological Research Institute, Houston, TX, USA
| | - Marcus J Miller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Aleksandar Milosavljevic
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, One Baylor Plaza, 400D, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Shawli AM, Nazer AT, Khayyat Y, Alqurashi MG, Hakami F. A Novel Variant in the AGPS Gene Causes the Rare Rhizomelic Chondrodysplasia Punctata Type 3: A Case Report. Cureus 2021; 13:e20543. [PMID: 35070570 PMCID: PMC8765576 DOI: 10.7759/cureus.20543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 11/09/2022] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a devastating medical condition for patients and their families. It is a rare peroxisomal autosomal recessive disorder. It was recognized clinically with skeletal abnormalities and intellectual disabilities mainly due to plasmalogen deficiency. Here, we report a case of a 16-day-old girl who was referred to King Abdulaziz Medical City Jeddah, Saudi Arabia because of dysmorphic features. Her growth parameters were below the 3rd centile with short proximal long bones and multiple joint contractures in the extremities. The radiographs showed rhizomelic and shortening of both humeri and femurs. Moreover, punctate ossification was identified in the upper spine, humeri around the shoulders, and femurs around the knees. We observed other classical features, and the genetic testing confirmed the diagnosis of RCDP type 3. Although RCDP is a rare condition, it is a distressing burden necessitating early diagnosis and a holistic approach for management.
Collapse
|
9
|
Bozelli JC, Azher S, Epand RM. Plasmalogens and Chronic Inflammatory Diseases. Front Physiol 2021; 12:730829. [PMID: 34744771 PMCID: PMC8566352 DOI: 10.3389/fphys.2021.730829] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
It is becoming widely acknowledged that lipids play key roles in cellular function, regulating a variety of biological processes. Lately, a subclass of glycerophospholipids, namely plasmalogens, has received increased attention due to their association with several degenerative and metabolic disorders as well as aging. All these pathophysiological conditions involve chronic inflammatory processes, which have been linked with decreased levels of plasmalogens. Currently, there is a lack of full understanding of the molecular mechanisms governing the association of plasmalogens with inflammation. However, it has been shown that in inflammatory processes, plasmalogens could trigger either an anti- or pro-inflammation response. While the anti-inflammatory response seems to be linked to the entire plasmalogen molecule, its pro-inflammatory response seems to be associated with plasmalogen hydrolysis, i.e., the release of arachidonic acid, which, in turn, serves as a precursor to produce pro-inflammatory lipid mediators. Moreover, as plasmalogens comprise a large fraction of the total lipids in humans, changes in their levels have been shown to change membrane properties and, therefore, signaling pathways involved in the inflammatory cascade. Restoring plasmalogen levels by use of plasmalogen replacement therapy has been shown to be a successful anti-inflammatory strategy as well as ameliorating several pathological hallmarks of these diseases. The purpose of this review is to highlight the emerging role of plasmalogens in chronic inflammatory disorders as well as the promising role of plasmalogen replacement therapy in the treatment of these pathologies.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Sayed Azher
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Plasmalogens regulate the AKT-ULK1 signaling pathway to control the position of the axon initial segment. Prog Neurobiol 2021; 205:102123. [PMID: 34302896 DOI: 10.1016/j.pneurobio.2021.102123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/11/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023]
Abstract
The axon initial segment (AIS) is a specialized region in neurons that encompasses two essential functions, the generation of action potentials and the regulation of the axodendritic polarity. The mechanism controlling the position of the axon initial segment to allow plasticity and regulation of neuron excitability is unclear. Here we demonstrate that plasmalogens, the most abundant ether-phospholipid, are essential for the homeostatic positioning of the AIS. Plasmalogen deficiency is a hallmark of Rhizomelic Chondrodysplasia Punctata (RCDP) and Zellweger spectrum disorders, but Alzheimer's and Parkinson's disease, are also characterized by plasmalogen defects. Neurons lacking plasmalogens displaced the AIS to more distal positions and were characterized by reduced excitability. Treatment with a short-chain alkyl glycerol was able to rescue AIS positioning. Plasmalogen deficiency impaired AKT activation, and we show that inhibition of AKT phosphorylation at Ser473 and Thr308 is sufficient to induce a distal relocation of the AIS. Pathway analysis revealed that downstream of AKT, overtly active ULK1 mediates AIS repositioning. Rescuing the impaired AKT signaling pathway was able to normalize AIS position independently of the biochemical defect. These results unveil a previously unknown mechanism that couples the phospholipid composition of the neuronal membrane to the positional assembly of the AIS.
Collapse
|
11
|
Luisman T, Smith T, Ritchie S, Malone KE. Genetic epidemiology approach to estimating birth incidence and current disease prevalence for rhizomelic chondrodysplasia punctata. Orphanet J Rare Dis 2021; 16:300. [PMID: 34229749 PMCID: PMC8258949 DOI: 10.1186/s13023-021-01889-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Rhizomelic chondrodysplasia punctata (RCDP) is an inherited ultra-rare disease which results in severely impaired physical and mental development. Mutations in one of five genes involved in plasmalogen biosynthesis have been reported to drive disease pathology. Estimates of disease incidence have been extremely challenging due to the rarity of the disorder, preventing an understanding of the unmet medical need. To address this, we have prepared a disease incidence and prevalence model based on genetic epidemiology approaches to estimate the total number of RCDP patients affected, and their demographic characteristics. Results Extraction of allelic frequencies for known and predicted pathogenic variants in PEX7, GNPAT, AGPS, FAR1, PEX5 (limited to the PTS2 domain encoding region) genes, from large-scale human genetic diversity datasets (TopMed and gnomAD) revealed the mutational landscape contributing to the RCDP patient population in the US and Europe. We computed genetic prevalence to derive birth incidence for RCDP and modeled the impact to life expectancy to obtain high confidence estimates of disease prevalence. Our population genetics-based model indicates PEX7 variants are expected to contribute to the majority of RCDP cases in both the US and Europe; closely aligning with clinical reports. Furthermore, this model provides estimates for RCDP subtypes due to mutations in other genes, including exceedingly rare subtypes. Conclusion In total, the estimated number of RCDP patients in the US and the five largest European countries (UK, Germany, France, Italy and Spain) is between 516 and 847 patients, all under the age of 35 years old. This model provides a quantitative framework for better understanding the unmet medical need in RCDP, to help guide disease awareness and diagnosis efforts for this specific patient group. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01889-z.
Collapse
Affiliation(s)
| | - Tara Smith
- Med-Life Discoveries, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
12
|
Fallatah W, Schouten M, Yergeau C, Di Pietro E, Engelen M, Waterham HR, Poll-The BT, Braverman N. Clinical, biochemical, and molecular characterization of mild (nonclassic) rhizomelic chondrodysplasia punctata. J Inherit Metab Dis 2021; 44:1021-1038. [PMID: 33337545 DOI: 10.1002/jimd.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023]
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a heterogenous group of disorders due to defects in genes encoding peroxisomal proteins required for plasmalogen (PL) biosynthesis, specifically PEX7 and PEX5 receptors, or GNPAT, AGPS and FAR1 enzymes. Most patients have congenital cataract and skeletal dysplasia. In the classic form, there is profound growth restriction and psychomotor delays, with most patients not advancing past infantile developmental milestones. Disease severity correlates to erythrocyte PL levels, which are almost undetectable in severe (classic) RCDP. In milder (nonclassic) forms, residual PL levels are associated with improved growth and development. However, the clinical course of this milder group remains largely unknown as only a few cases were reported. Using as inclusion criteria the ability to communicate and walk, we identified 16 individuals from five countries, ages 5-37 years, and describe their clinical, biochemical and molecular profiles. The average age at diagnosis was 2.6 years and most had cataract, growth deficiency, joint contractures, and developmental delays. Other major symptoms were learning disability (87%), behavioral issues (56%), seizures (43%), and cardiac defects (31%). All patients had decreased C16:0 PL levels that were higher than in classic RCDP, and up to 43% of average controls. Plasma phytanic acid levels were elevated in most patients. There were several common, and four novel, PEX7, and GNPAT hypomorphic alleles in this cohort. These results can be used to support earlier diagnosis and improve management in patients with mild RCDP.
Collapse
Affiliation(s)
- Wedad Fallatah
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
- Department of Medical Genetics, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Monica Schouten
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christine Yergeau
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Erminia Di Pietro
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Marc Engelen
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC - location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nancy Braverman
- Department of Human Genetics and Pediatrics, Child Health and Human Development Program, McGill University, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
13
|
Deb R, Joshi N, Nagotu S. Peroxisomes of the Brain: Distribution, Functions, and Associated Diseases. Neurotox Res 2021; 39:986-1006. [PMID: 33400183 DOI: 10.1007/s12640-020-00323-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Peroxisomes are versatile cell organelles that exhibit a repertoire of organism and cell-type dependent functions. The presence of oxidases and antioxidant enzymes is a characteristic feature of these organelles. The role of peroxisomes in various cell types in human health and disease is under investigation. Defects in the biogenesis of the organelle and its function lead to severe debilitating disorders. In this manuscript, we discuss the distribution and functions of peroxisomes in the nervous system and especially in the brain cells. The important peroxisomal functions in these cells and their role in the pathology of associated disorders such as neurodegeneration are highlighted in recent studies. Although the cause of the pathogenesis of these disorders is still not clearly understood, emerging evidence supports a crucial role of peroxisomes. In this review, we discuss research highlighting the role of peroxisomes in brain development and its function. We also provide an overview of the major findings in recent years that highlight the role of peroxisome dysfunction in various associated diseases.
Collapse
Affiliation(s)
- Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Fallatah W, Smith T, Cui W, Jayasinghe D, Di Pietro E, Ritchie SA, Braverman N. Oral administration of a synthetic vinyl-ether plasmalogen normalizes open field activity in a mouse model of rhizomelic chondrodysplasia punctata. Dis Model Mech 2020; 13:dmm.042499. [PMID: 31862688 PMCID: PMC6994958 DOI: 10.1242/dmm.042499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Rhizomelic chondrodysplasia punctata (RCDP) is a rare genetic disorder caused by mutations in peroxisomal genes essential for plasmalogen biosynthesis. Plasmalogens are a class of membrane glycerophospholipids containing a vinyl-ether-linked fatty alcohol at the sn-1 position that affect functions including vesicular transport, membrane protein function and free radical scavenging. A logical rationale for the treatment of RCDP is therefore the therapeutic augmentation of plasmalogens. The objective of this work was to provide a preliminary characterization of a novel vinyl-ether synthetic plasmalogen, PPI-1040, in support of its potential utility as an oral therapeutic option for RCDP. First, wild-type mice were treated with 13C6-labeled PPI-1040, which showed that the sn-1 vinyl-ether and the sn-3 phosphoethanolamine groups remained intact during digestion and absorption. Next, a 4-week treatment of adult plasmalogen-deficient Pex7hypo/null mice with PPI-1040 showed normalization of plasmalogen levels in plasma, and variable increases in plasmalogen levels in erythrocytes and peripheral tissues (liver, small intestine, skeletal muscle and heart). Augmentation was not observed in brain, lung and kidney. Functionally, PPI-1040 treatment normalized the hyperactive behavior observed in the Pex7hypo/null mice as determined by open field test, with a significant inverse correlation between activity and plasma plasmalogen levels. Parallel treatment with an equal amount of ether plasmalogen precursor, PPI-1011, did not effectively augment plasmalogen levels or reduce hyperactivity. Our findings show, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and can improve plasmalogen levels in an RCDP mouse model. Further exploration of its clinical utility is warranted. This article has an associated First Person interview with the joint first authors of the paper. Summary: This article shows, for the first time, that a synthetic vinyl-ether plasmalogen is orally bioavailable and bioactive in vivo following administration in animals.
Collapse
Affiliation(s)
- Wedad Fallatah
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada.,Department of Medical Genetics, King Abdul-Aziz University, Jeddah, 21589 Saudi Arabia
| | - Tara Smith
- Med-Life Discoveries LP, Saskatoon, SK S7N2X8, Canada
| | - Wei Cui
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Erminia Di Pietro
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| | | | - Nancy Braverman
- Department of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center and McGill University, Montreal, QC H4A3J1, Canada
| |
Collapse
|
15
|
Lin YC, Chen CN. Stippled Calcifications over Bilateral Epiphyses of Humeri. J Pediatr 2018; 201:296. [PMID: 29752169 DOI: 10.1016/j.jpeds.2018.03.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Yu-Chen Lin
- Department of Pediatrics National Taiwan University Hospital Hsin-Chu Branch Hsin-Chu, Taiwan
| | - Chi-Nien Chen
- Department of Pediatrics National Taiwan University Hospital Hsin-Chu Branch Hsin-Chu, Taiwan
| |
Collapse
|
16
|
Duker AL, Niiler T, Bober MB. Expected weight gain for children with microcephalic osteodysplastic primordial dwarfism type II. Am J Med Genet A 2017; 173:3067-3069. [PMID: 28940990 DOI: 10.1002/ajmg.a.38467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/07/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Angela L Duker
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Timothy Niiler
- Gait Laboratory, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Michael B Bober
- Division of Medical Genetics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
17
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|