1
|
Yang Y, Chen L, Wang Z, Ding Y, Liu Y. A De Novo Frameshift Variant in SMC1A Causes Non-Classic Cornelia de Lange Syndrome With Epilepsy: A Case Report and Literature Review. Mol Genet Genomic Med 2025; 13:e70058. [PMID: 39831465 PMCID: PMC11744363 DOI: 10.1002/mgg3.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder. Although individuals with variants in the SMC1A gene are less commonly seen in CdLS, they exhibit a high incidence of epilepsy and atypical phenotypic variability. METHODS The clinical data of a patient with non-classic CdLS and epilepsy caused by an SMC1A variant were summarized. A literature review was conducted to analyze the genotype-phenotype correlations and epilepsy characteristics in related cases. RESULTS A 5-year-6-month-old female patient presented with facial features, double outlet right ventricle (DORV), and recurrent epilepsy. Whole exome sequencing (WES) identified a de novo heterozygous frameshift mutation, c.2890_2893del (p.Ser964Valfs*26), in the SMC1A gene. A review of the literature identified several characteristics of non-classic CdLS with epilepsy caused by SMC1A variants: the majority of cases were non-classic (81.5%), predominantly female (68.2%), with a median onset age of 11.5 months. Common features included severe/profound developmental delay (52.6%), hypotonia (18.2%), cardiovascular anomalies (36.4%), and intrauterine growth retardation (IUGR) (22.7%). Among the non-classic cases, seizure clusters occurred in 22.7%, status epilepticus in 18.2%, and drug-resistant epilepsy in 33.3%. Genotypes in non-classic cases included missense mutations (40.9%), frameshift mutations (31.8%), splice site variants (9.1%), nonsense mutations (9.1%), deletions (4.5%), and truncations (4.5%). CONCLUSION Our study expanded the phenotypic data and mutational spectrum of non-classic CdLS with epilepsy caused by SMC1A variants. Compared to individuals with the classic form of CdLS, the non-classic cases appeared more frequently in females and were associated with a higher prevalence of severe/profound developmental delay and cardiovascular anomalies. In contrast, IUGR was significantly less common in non-classic individuals. Regarding epilepsy characteristics, some individuals including seizure clusters, status epilepticus, drug resistance, and hypotonia, no significant differences were observed between classic and non-classic cases. The predominant genotypes in non-classic cases were missense and frameshift mutations.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Women and Children's Hospital, School of MedicineXiamen UniversityXiamenChina
| | - Liqing Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhenzhen Wang
- Department of Child Development and Behavior, Women and Children's Hospital, School of MedicineXiamen UniversityXiamenChina
| | - Yaling Ding
- Department of Medical Imaging, Women and Children's Hospital, School of MedicineXiamen UniversityXiamenChina
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Gibellato E, Cianci P, Mariani M, Parma B, Huisman S, Śmigiel R, Bisgaard AM, Massa V, Gervasini C, Moretti A, Cattoni A, Biondi A, Selicorni A. SMC1A epilepsy syndrome: clinical data from a large international cohort. Am J Med Genet A 2024:e63577. [PMID: 38421079 DOI: 10.1002/ajmg.a.63577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
SMC1A epilepsy syndrome or developmental and epileptic encephalopathy-85 with or without midline brain defects (DEE85, OMIM #301044) is an X-linked neurologic disorder associated with mutations of the SMC1A gene, which is also responsible for about 5% of patients affected by Cornelia de Lange syndrome spectrum (CdLS). Only described in female patients, SMC1A epilepsy syndrome is characterized by the onset of severe refractory epileptic seizures in the first year of life, global developmental delay, a variable degree of intellectual disability, and dysmorphic facial features not typical of CdLS. This was a descriptive observational study for the largest international cohort with this specific disorder. The main goal of this study was to improve the knowledge of the natural history of this phenotype with particular attention to the psychomotor development and the epilepsy data. The analyzed cohort shows normal prenatal growth with the subsequent development of postnatal microcephaly. The incidence of neonatal problems (seizures and respiratory compromise) is considerable (51.4%). There is a significant prevalence of central nervous system (20%) and cardiovascular malformations (20%). Motor skills are generally delayed. The presence of drug-resistant epilepsy is confirmed; the therapeutic role of a ketogenic diet is still uncertain. The significant regression of previously acquired skills following the onset of seizures has been observed. Facial dysmorphisms are variable and no patient shows a classic CdLS phenotype. To sum up, SMC1A variants caused drug-resistant epilepsy in these patients, more than two-thirds of whom were shown to progress to developmental and epileptic encephalopathy. The SMC1A gene variants are all different from each other (apart from a couple of monozygotic twins), demonstrating the absence of a mutational hotspot in the SMC1A gene. Owing to the absence of phenotypic specificity, whole-exome sequencing is currently the diagnostic gold standard.
Collapse
Affiliation(s)
- Elisabetta Gibellato
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Cianci
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| | - Milena Mariani
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| | - Barbara Parma
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| | - Sylvia Huisman
- Pediatric Department, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Śmigiel
- Pediatric Department, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Anne-Marie Bisgaard
- Pediatric Department and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Valentina Massa
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Alex Moretti
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alessandro Cattoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Angelo Selicorni
- Pediatric Department, "Mariani" Center for Fragile Child, ASST Lariana, Sant'Anna Hospital, Como, Italy
| |
Collapse
|
3
|
Bozarth XL, Lopez J, Fang H, Lee-Eng J, Duan Z, Deng X. Phenotypes and Genotypes in Patients with SMC1A-Related Developmental and Epileptic Encephalopathy. Genes (Basel) 2023; 14:852. [PMID: 37107610 PMCID: PMC10138066 DOI: 10.3390/genes14040852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The X-linked SMC1A gene encodes a core subunit of the cohesin complex that plays a pivotal role in genome organization and gene regulation. Pathogenic variants in SMC1A are often dominant-negative and cause Cornelia de Lange syndrome (CdLS) with growth retardation and typical facial features; however, rare SMC1A variants cause a developmental and epileptic encephalopathy (DEE) with intractable early-onset epilepsy that is absent in CdLS. Unlike the male-to-female ratio of 1:2 in those with CdLS associated with dominant-negative SMC1A variants, SMC1A-DEE loss-of-function (LOF) variants are found exclusively in females due to presumed lethality in males. It is unclear how different SMC1A variants cause CdLS or DEE. Here, we report on phenotypes and genotypes of three females with DEE and de novo SMC1A variants, including a novel splice-site variant. We also summarize 41 known SMC1A-DEE variants to characterize common and patient-specific features. Interestingly, compared to 33 LOFs detected throughout the gene, 7/8 non-LOFs are specifically located in the N/C-terminal ATPase head or the central hinge domain, both of which are predicted to affect cohesin assembly, thus mimicking LOFs. Along with the characterization of X-chromosome inactivation (XCI) and SMC1A transcription, these variants strongly suggest that a differential SMC1A dosage effect of SMC1A-DEE variants is closely associated with the manifestation of DEE phenotypes.
Collapse
Affiliation(s)
- Xiuhua L. Bozarth
- Division of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, USA
| | - Jonathan Lopez
- Division of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, USA
| | - He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline Lee-Eng
- Division of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, USA
| | - Zhijun Duan
- Division of Hematology, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Cummings CT, Rowley MJ. Implications of Dosage Deficiencies in CTCF and Cohesin on Genome Organization, Gene Expression, and Human Neurodevelopment. Genes (Basel) 2022; 13:583. [PMID: 35456389 PMCID: PMC9030571 DOI: 10.3390/genes13040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Properly organizing DNA within the nucleus is critical to ensure normal downstream nuclear functions. CTCF and cohesin act as major architectural proteins, working in concert to generate thousands of high-intensity chromatin loops. Due to their central role in loop formation, a massive research effort has been dedicated to investigating the mechanism by which CTCF and cohesin create these loops. Recent results lead to questioning the direct impact of CTCF loops on gene expression. Additionally, results of controlled depletion experiments in cell lines has indicated that genome architecture may be somewhat resistant to incomplete deficiencies in CTCF or cohesin. However, heterozygous human genetic deficiencies in CTCF and cohesin have illustrated the importance of their dosage in genome architecture, cellular processes, animal behavior, and disease phenotypes. Thus, the importance of considering CTCF or cohesin levels is especially made clear by these heterozygous germline variants that characterize genetic syndromes, which are increasingly recognized in clinical practice. Defined primarily by developmental delay and intellectual disability, the phenotypes of CTCF and cohesin deficiency illustrate the importance of architectural proteins particularly in neurodevelopment. We discuss the distinct roles of CTCF and cohesin in forming chromatin loops, highlight the major role that dosage of each protein plays in the amplitude of observed effects on gene expression, and contrast these results to heterozygous mutation phenotypes in murine models and clinical patients. Insights highlighted by this comparison have implications for future research into these newly emerging genetic syndromes.
Collapse
Affiliation(s)
- Christopher T. Cummings
- Munroe-Meyer Institute, Department of Genetic Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - M. Jordan Rowley
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Odanaka Y, Ashida A, Nemoto S, Hamanaka K, Matsumoto N. Severe cardiac defect in Cornelia de Lange syndrome from a novel SMC1A variant. Pediatr Int 2022; 64:e15031. [PMID: 35396801 DOI: 10.1111/ped.15031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Yutaka Odanaka
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shintaro Nemoto
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Lin Y, Huang J, Zhu Z, Zhang Z, Xian J, Yang Z, Qin T, Chen L, Huang J, Huang Y, Wu Q, Hu Z, Lin X, Xu G. Overlap phenotypes of the left ventricular noncompaction and hypertrophic cardiomyopathy with complex arrhythmias and heart failure induced by the novel truncated DSC2 mutation. Orphanet J Rare Dis 2021; 16:496. [PMID: 34819141 PMCID: PMC8611834 DOI: 10.1186/s13023-021-02112-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022] Open
Abstract
Background The left ventricular noncompaction cardiomyopathy (LVNC) is a rare subtype of cardiomyopathy associated with a high risk of heart failure (HF), thromboembolism, arrhythmia, and sudden cardiac death. Methods The proband with overlap phenotypes of LVNC and hypertrophic cardiomyopathy (HCM) complicates atrial fibrillation (AF), ventricular tachycardia (VT), and HF due to the diffuse myocardial lesion, which were diagnosed by electrocardiogram, echocardiogram and cardiac magnetic resonance imaging. Peripheral blood was collected from the proband and his relatives. DNA was extracted from the peripheral blood of proband for high-throughput target capture sequencing. The Sanger sequence verified the variants. The protein was extracted from the skin of the proband and healthy volunteer. The expression difference of desmocollin2 was detected by Western blot. Results The novel heterozygous truncated mutation (p.K47Rfs*2) of the DSC2 gene encoding an important component of desmosomes was detected by targeted capture sequencing. The western blots showed that the expressing level of functional desmocollin2 protein (~ 94kd) was lower in the proband than that in the healthy volunteer, indicating that DSC2 p.K47Rfs*2 obviously reduced the functional desmocollin2 protein expression in the proband. Conclusion The heterozygous DSC2 p.K47Rfs*2 remarkably and abnormally reduced the functional desmocollin2 expression, which may potentially induce the overlap phenotypes of LVNC and HCM, complicating AF, VT, and HF.
Collapse
Affiliation(s)
- Yubi Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jiana Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Reproductive Center, The Six Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Zhiling Zhu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zuoquan Zhang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianzhong Xian
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhe Yang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Tingfeng Qin
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Linxi Chen
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Jingmin Huang
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China
| | - Yin Huang
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Qiaoyun Wu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Zhenyu Hu
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Xiufang Lin
- The Center of Cardiovascular Diseases, The Department of Cardiology, Radiology and Ultrasonography, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Geyang Xu
- Department of Physiology, The School of Medicine of Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
7
|
Finsterer J, Stöllberger C. Left Ventricular Noncompaction Syndrome: Genetic Insights and Therapeutic Perspectives. Curr Cardiol Rep 2020; 22:84. [DOI: 10.1007/s11886-020-01339-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Expansion of the phenotypic spectrum of SMC1A nonsense variants: a patient with cerebellar atrophy and review of the literature. Clin Dysmorphol 2020; 29:217-223. [PMID: 32496272 DOI: 10.1097/mcd.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Chinen Y, Nakamura S, Kaneshi T, Nakayashiro M, Yanagi K, Kaname T, Naritomi K, Nakanishi K. A novel nonsense SMC1A mutation in a patient with intractable epilepsy and cardiac malformation. Hum Genome Var 2019; 6:23. [PMID: 31098032 PMCID: PMC6513828 DOI: 10.1038/s41439-019-0053-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 01/11/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a cohesinopathy caused by genetic variations. We present a female with SMC1A-associated CdLS with a novel SMC1A truncation mutation (p. Arg499Ter), transposition of the great arteries, and periodic intractable seizures from 40 months of age. A review of the literature revealed that a seizure-free period after birth of at least 15 months is required for these patients to be able to walk, irrespective of the epileptic course.
Collapse
Affiliation(s)
- Yasutsugu Chinen
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Sadao Nakamura
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Takuya Kaneshi
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Mami Nakayashiro
- Department of Pediatrics, Okinawa Prefectural Nanbu Medical Center Children's Medical Center, Haebaru, Okinawa Japan
| | - Kumiko Yanagi
- 3Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- 3Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Naritomi
- Okinawa Nanbu Habilitation and Medical Center, Naha, Japan
| | - Koichi Nakanishi
- 1Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
10
|
Shi A, Levin AV. Ophthalmologic findings in the Cornelia de Lange syndrome. Ophthalmic Genet 2019; 40:1-6. [PMID: 30767692 DOI: 10.1080/13816810.2019.1571617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) is a congenital disorder characterized by multisystem abnormalities, including distinct ophthalmologic findings. In recent years, advances in molecular genetics have begun to provide new insight into the characterization of these clinical features and the genetic basis of the syndrome. MATERIALS AND METHODS We included 37 articles that were identified through an electronic search in PubMed and through the reference lists of previously conducted reviews. Studies of 30 or more patients were used to report frequencies of common and less common findings. Genotype-phenotype studies were used to provide additional information when available. RESULTS Ocular anomalies are present in most patients with CdLS. Common findings include long eyelashes, synophrys, hirsutism of the eyebrows, peripapillary pigment ring, and myopia. Less common findings include hyperopia, ptosis, blepharitis, short palpebral fissure length, down-slanting palpebral fissures, mild microcornea, strabismus, nystagmus, and optic nerve abnormalities. CONCLUSIONS This review provides a comprehensive summary of the ophthalmologic findings in CdLS. Mutations in certain genes may be associated with specific ocular abnormalities, although future genotype studies are needed to further characterize these relationships.
Collapse
Affiliation(s)
- Angell Shi
- a Sidney Kimmel Medical College , Thomas Jefferson University , Philadelphia , Pennsylvania , USA
| | - Alex V Levin
- a Sidney Kimmel Medical College , Thomas Jefferson University , Philadelphia , Pennsylvania , USA.,b Pediatric Ophthalmology and Ocular Genetics , Wills Eye Hospital , Philadelphia , Pennsylvania , USA
| |
Collapse
|