1
|
Yang F, Ding Y, Wang Y, Zhang Q, Li H, Yu T, Chang G, Wang X. A de novo variant in ZBTB18 gene caused autosomal dominant non-syndromic intellectual disability 22 syndrome: A case report and literature review. Medicine (Baltimore) 2024; 103:e35908. [PMID: 38215144 PMCID: PMC10783315 DOI: 10.1097/md.0000000000035908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 01/14/2024] Open
Abstract
RATIONALE Autosomal dominant non-syndromic intellectual disability 22 is a rare genetic disorder caused by the ZBTB18 gene. This disorder affects various parts of the body, leading to intellectual disability. It is noteworthy that only 31 cases of this disorder have been reported thus far. As the symptom severity may differ, doctors may face challenges in diagnosing it accurately. It is crucial to be familiar with this disorder's symptoms to receive proper diagnosis and essential medical care. PATIENT CONCERNS There is a case report of a 6-year-old boy who had an unexplained thyroid abnormality, global developmental delay, and an abnormal signal of white matter in brain MRI. However, he did not have growth retardation, microcephaly, corpus callosum hypoplasia, epilepsy, or dysmorphic facial features. Clinical whole exome sequencing revealed a de novo pathogenic variant in the ZBTB18 gene (c.1207delC, p. Arg403Alafs*60), which is a previously unreported site. This variant causes the premature termination of peptide chain synthesis, leading to incomplete polypeptide chains. DIAGNOSES Autosomal dominant non-syndromic intellectual and disability 22 syndrome and thyroid dysfunction. INTERVENTIONS Rehabilitation training. OUTCOMES The individual is experiencing difficulty with their motor skills, appearing clumsier while running. He struggles with expressing themselves and forming complete sentences, relying mostly on gestures and pointing. LESSONS The clinical presentations of mental retardation, autosomal dominant, type 22 (MRD22) are complicated and varied. Although early diagnosis can be made according to typical clinical symptoms, whole exome sequencing is necessary for diagnosing MRD22, as our study indicates.
Collapse
Affiliation(s)
- Fan Yang
- Clinical Research Ward, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Clinical Research Ward, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoying Chang
- Clinical Research Ward, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiumin Wang
- Clinical Research Ward, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Li N, Kang H, Zou Y, Liu Z, Deng Y, Wang M, Li L, Qin H, Qiu X, Wang Y, Zhu J, Agostino M, Heng JIT, Yu P. A novel heterozygous ZBTB18 missense mutation in a family with non-syndromic intellectual disability. Neurogenetics 2023; 24:251-262. [PMID: 37525067 DOI: 10.1007/s10048-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired adaptive behavior and cognitive capacity. High throughput sequencing approaches have revealed the genetic etiologies for 25-50% of ID patients, while inherited genetic mutations were detected in <5% cases. Here, we investigated the genetic cause for non-syndromic ID in a Han Chinese family. Whole genome sequencing was performed on identical twin sisters diagnosed with ID, their respective children, and their asymptomatic parents. Data was filtered for rare variants, and in silico prediction tools were used to establish pathogenic alleles. Candidate mutations were validated by Sanger sequencing. In silico modeling was used to evaluate the mutation's effects on the protein encoded by a candidate coding gene. A novel heterozygous variant in the ZBTB18 gene c.1323C>G (p.His441Gln) was identified. This variant co-segregated with affected individuals in an autosomal dominant pattern and was not detected in asymptomatic family members. Molecular studies reveal that a p.His441Gln substitution disrupts zinc binding within the second zinc finger and disrupts the capacity for ZBTB18 to bind DNA. This is the first report of an inherited ZBTB18 mutation for ID. This study further validates WGS for the accurate molecular diagnosis of ID.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Yanna Zou
- Department of Gynaecology and Obstetrics, Changyi Maternal and Child Care Hospital, Weifang, Shandong, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hong Qin
- Department of Gynaecology and Obstetrics, Wuhou District People's Hospital, Chengdu, Sichuan, China
| | - Xiaoqiong Qiu
- Department of Obstetrics and Gynecology, Pidu District People's Hospital, Chengdu, China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Mark Agostino
- Faculty of Health Sciences, Curtin University, Bentley, Australia
- Curtin Institute for Computation, Curtin University, Bentley, Australia
- Curtin Medical School, Curtin University, Bentley, Australia
| | - Julian I-T Heng
- Faculty of Health Sciences, Curtin University, Bentley, Australia.
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Pavone P, Pappalardo XG, Ohazuruike UNN, Striano P, Parisi P, Corsello G, Marino SD, Ruggieri M, Parano E, Falsaperla R. Chromosome 15q BP4-BP5 Deletion in a Girl with Nocturnal Frontal Lobe Epilepsy, Migraine, Circumscribed Hypertrichosis, and Language Impairment. J Epilepsy Res 2020; 10:84-91. [PMID: 33659201 PMCID: PMC7903043 DOI: 10.14581/jer.20014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023] Open
Abstract
The 15q13.3 microdeletion (microdel15q13.3) syndrome (OMIM 612001) has been reported in healthy subjects as well as in individuals with a wide spectrum of clinical manifestations ranging from mild to severe neurological disorders, including developmental delay/intellectual disability, autism spectrum disorder, schizophrenia, epilepsy, behavioral problems and speech dysfunction. This study explored the link between this genomic rearrangement and nocturnal frontal lobe epilepsy (NFLE), which could improve the clinical interpretation. A clinical and genomic investigation was carried out on an 8-year-girl with a de novo deletion flanking the breakpoints (BPs) 4 and 5 of 15q13.3 detected by array comparative genomic hybridization analysis, affected by NFLE, migraine with aura, minor facial features, mild cognitive and language impairment, and circumscribed hypertrichosis. Literature survey of clinical studies was included. Nine years follow-up have displayed a benign course of the epileptic disorder with a progressive reduction and disappearance of the epileptic seizures, mild improvement of cognitive and language skills, partial cutaneous hypertrichosis regression, but stable ongoing of migraine episodes. A likely relationship between the BP4–BP5 deletion and NFLE with other symptoms presented by the girl is discussed together with a review of the literature on phenotypic features in microdel15q13.3.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Xena Giada Pappalardo
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, Genoa, Italy
| | - Pasquale Parisi
- Child Neurology, NESMOS Department, Faculty of Medicine & Psychology, "Sapienza" University, c/o Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | | | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Enrico Parano
- Unit of Catania, Institute for Biomedical Research and Innovation (IRIB), National Council of Research, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Neonatology University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
4
|
Mesman S, Bakker R, Smidt MP. Tcf4 is required for correct brain development during embryogenesis. Mol Cell Neurosci 2020; 106:103502. [PMID: 32474139 DOI: 10.1016/j.mcn.2020.103502] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023] Open
Abstract
Tcf4 has been linked to autism, schizophrenia, and Pitt-Hopkins Syndrome (PTHS) in humans, suggesting a role for Tcf4 in brain development and importantly cortical development. However, the mechanisms behind its role in disease and brain development are still elusive. We provide evidence that Tcf4 has a critical function in the differentiation of cortical regions, corpus callosum and anterior commissure formation, and development of the hippocampus during murine embryonic development. In the present study, we show that Tcf4 is expressed throughout the developing brain at the peak of neurogenesis. Deletion of Tcf4 results in mis-specification of the cortical neurons, malformation of the corpus callosum and anterior commissure, and hypoplasia of the hippocampus. Furthermore, the Tcf4 mutant shows an absence of midline remodeling, underlined by the loss of GFAP-expressing midline glia in the indusium griseum and callosal wedge and midline zipper glia in the telencephalic midline. RNA-sequencing on E14.5 cortex material shows that Tcf4 functions as a transcriptional activator and loss of Tcf4 results in downregulation of genes linked to neurogenesis and neuronal maturation. Furthermore, many genes that are differentially expressed after Tcf4 ablation are linked to other neurodevelopmental disorders. Taken together, we show that correct brain development and neuronal differentiation are severely affected in Tcf4 mutants, phenocopying morphological brain defects detected in PTHS patients. The presented data identifies new leads to understand the mechanisms behind brain and specifically cortical development and can provide novel insights in developmental mechanisms underlying human brain defects.
Collapse
Affiliation(s)
- Simone Mesman
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - Reinier Bakker
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, FNWI University of Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Pavone P, Ruggieri M, Marino SD, Corsello G, Pappalardo X, Polizzi A, Parano E, Romano C, Marino S, Praticò AD, Falsaperla R. Chromosome 15q BP3 to BP5 deletion is a likely locus for speech delay and language impairment: Report on a four-member family and an unrelated boy. Mol Genet Genomic Med 2020; 8:e1109. [PMID: 31991071 PMCID: PMC7196468 DOI: 10.1002/mgg3.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/13/2023] Open
Abstract
Background Deletions in chromosome 15q13 have been reported both in healthy people and individuals with a wide range of behavioral and neuropsychiatric disturbances. Six main breakpoint (BP) subregions (BP1‐BP6) are mapped to the 15q13 region and three further embedded BP regions (BP3‐BP5). The deletion at BP4‐BP5 is the rearrangement most frequently observed compared to other known deletions in BP3‐BP5 and BP3‐BP4 regions. Deletions of each of these three regions have previously been implicated in a variable range of clinical phenotypes, including minor dysmorphism, developmental delay/intellectual disability, epilepsy, autism spectrum disorders, behavioral disturbances, and speech disorders. Of note, no overt clinical difference among each group of BP region deletions has been recorded so far. Methods We report on a four‐member family plus an additional unrelated boy affected by a BP3‐BP5 deletion that presented with typical clinical signs including speech delay and language impairment. A review of the clinical features associated with the three main groups of BP regions (BP4‐BP5, BP3‐BP5, and BP3‐BP4) deletions is reported. Results Array‐CGH analysis revealed in the mother (case 1) and in her three children (cases 2, 3, and 4), as well as in the unrelated boy (case 5), the following rearrangement: arr (hg19) 15q13.1‐q13.3 (29.213.402–32.510.863) x1. Conclusion This report, along with other recent observations, suggests the hypothesis that the BP region comprised between BP3 and BP5 in chromosome 15q13 is involved in several brain human dysfunctions, including impairment of the language development and, its deletion, may be directly or indirectly responsible for the speech delay and language deficit in the affected individuals.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Clinical Pediatrics, University Hospital "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy.,Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Simona D Marino
- Units of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Giovanni Corsello
- Units of Pediatrics and Neonatal Intensive Care, Department of Health Promotion of Maternal-Infantile Care and of Excellence Internal and Specialist Medicine "G. D'Alessandro" [PROMISE], University of Palermo, Palermo, Italy
| | - Xena Pappalardo
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Enrico Parano
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Catia Romano
- Units of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Silvia Marino
- Units of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Andrea Domenico Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Units of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| |
Collapse
|
6
|
Wang W, Mao B, Wei X, Yin D, Li H, Mao L, Guo X, Sun Y, Yang Y. Application of an improved targeted next generation sequencing method to diagnose non‑syndromic mental retardation in one step: A case report. Mol Med Rep 2018; 18:981-986. [PMID: 29845227 DOI: 10.3892/mmr.2018.9031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/01/2018] [Indexed: 11/06/2022] Open
Abstract
The genetic basis of congenital mental retardation includes chromosomal anomalies and single gene mutations. In addition to chromosome microarray analysis, next‑generation sequencing (NGS) and Sanger sequencing have additionally been applied to identify single gene mutations. However, no methods exist to identify the cause of an anomaly in one step. The present study applied an improved targeted NGS method to diagnose an 8‑year‑old Chinese Han female with mental retardation in one step. The microdeletion 17p11.2 was successfully detected by the improved targeted NGS and no single gene mutations were identified. The same microdeletion was verified using low coverage whole‑genome sequencing. Fertility guidance was also given to the patient's parents. In the present study, an improved targeted NGS method was applied to diagnose non‑syndromic mental retardation of unknown cause in one step. This improved method has the potential to be developed into a screening panel for the effective diagnosis of genetic abnormalities in non‑syndromic mental retardation and other congenital anomalies.
Collapse
Affiliation(s)
- Weipeng Wang
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, P.R. China
| | - Bing Mao
- Department of Neurology, Wuhan Medical and Health Center for Women and Children, Wuhan, Hubei 430016, P.R. China
| | - Xiaoming Wei
- BGI‑Wuhan, BGI‑Shenzhen, Wuhan, Hubei 430074, P.R. China
| | - Dan Yin
- BGI‑Wuhan, BGI‑Shenzhen, Wuhan, Hubei 430074, P.R. China
| | - Hui Li
- Prenatal Diagnosis Center, Hubei Maternal and Child Health Hospital, Wuhan, Hubei 430070, P.R. China
| | - Liangwei Mao
- BGI‑Wuhan, BGI‑Shenzhen, Wuhan, Hubei 430074, P.R. China
| | - Xueqin Guo
- BGI‑Wuhan, BGI‑Shenzhen, Wuhan, Hubei 430074, P.R. China
| | - Yan Sun
- BGI‑Wuhan, BGI‑Shenzhen, Wuhan, Hubei 430074, P.R. China
| | - Yun Yang
- BGI‑Wuhan, BGI‑Shenzhen, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|