1
|
Zhu J, Hu J. Prenatal detection of chromosome 7q deletion with duplication: A case report and literature review. Medicine (Baltimore) 2024; 103:e38461. [PMID: 38847723 PMCID: PMC11155570 DOI: 10.1097/md.0000000000038461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
RATIONALE With advances in prenatal diagnostic techniques, chromosomal microdeletions and microduplications have become the focus of prenatal diagnosis. 7q partial monosomy or trisomy due to a deletion or duplication of the 7q end is relatively rare and usually originates from parents carrying a balanced translocation. PATIENT CONCERNS Noninvasive prenatal screening (NIPT) showed a fetus with partial deletion and duplication of chromosome 7q. It was not possible to determine whether the fetus was normal. DIAGNOSES Conventional chromosome G-banding and chromosome microarray analysis (CMA) were performed on fetal amniotic fluid samples and parental peripheral blood samples. INTERVENTIONS The pregnant women were given detailed genetic counseling by clinicians. OUTCOMES The fetal karyotype was 46, XY on conventional G-banding analysis. The CMA test results showed a deletion of approximately 7.8 Mb in the 7q36.1q36.3 region and a duplication of 6.6Mb in the 7q35q36.1 region. The parents' karyotype analysis and CMA results were normal, indicating a new mutation. LESSONS CMA molecular diagnostic analysis can effectively detect chromosomal microdeletions or microduplications, clarify the relationship between fetal genotype and clinical phenotype, and provide a reference for prenatal diagnosis of chromosomal microdeletion-duplication syndrome.
Collapse
Affiliation(s)
- Jinping Zhu
- Genetic Medical Center, Women and Children’s Hospital of Linyi City, Liyin, China
| | - Juan Hu
- Genetic Medical Center, Women and Children’s Hospital of Linyi City, Liyin, China
| |
Collapse
|
2
|
Kendir-Demirkol Y, Yeter B, Jenny LA. Expanding the Phenotypic and Genotypic Spectrum of Weaver Syndrome: A Missense Variant of the EZH2 Gene. Mol Syndromol 2024; 15:161-166. [PMID: 38585548 PMCID: PMC10996336 DOI: 10.1159/000533733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/20/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction Weaver syndrome (WS) is a rare autosomal dominant disorder characterized by distinctive facial features, pre- and post-natal overgrowth, macrocephaly, and variable developmental delay. The characteristic facial features are ocular hypertelorism, a broad forehead, almond-shaped palpebral fissures and, in early childhood, large, fleshy ears, a pointed "stuck-on" chin with horizontal skin creases, and retrognathia. Heterozygous pathogenic/likely pathogenic variants in the enhancer of zeste homolog 2 (EZH2) gene are responsible for WS. Case Presentation Here, we report a male patient with a heterozygous likely pathogenic variant in EZH2 gene who has tall stature, distinctive facial features, mild development delay, hypoxic-ischemic encephalopathy with a MRI finding of periventricular leukomalacia, gingival hypertrophy, and early onset high hypermetropia. Conclusion This case demonstrates the importance of reporting detailed molecular and clinical findings in patients to expand the genotypic and phenotypic findings of this rare syndrome.
Collapse
Affiliation(s)
- Yasemin Kendir-Demirkol
- Department of Pediatric Genetics, Health Science University, Ümraniye Education and Research Hospital, Istanbul, Turkey
| | - Burcu Yeter
- Department of Pediatric Genetics, Health Science University, Ümraniye Education and Research Hospital, Istanbul, Turkey
| | - Laura A. Jenny
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. A mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. JCI Insight 2024; 9:e173392. [PMID: 38015625 PMCID: PMC10906465 DOI: 10.1172/jci.insight.173392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters, indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-Seq comparing osteoblasts differentiated from Ezh2R684C/+, and Ezh2+/+ BM-mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases KDM6A and KDM6B substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W. Gao
- Department of Genetic Medicine
- Department of Molecular Biology and Genetics, and
| | | | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandros Boukas
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
| | - Hans T. Björnsson
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D. Hansen
- Department of Genetic Medicine
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jill A. Fahrner
- Department of Genetic Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Gualdrón Duarte JL, Yuan C, Gori AS, Moreira GCM, Takeda H, Coppieters W, Charlier C, Georges M, Druet T. Sequenced-based GWAS for linear classification traits in Belgian Blue beef cattle reveals new coding variants in genes regulating body size in mammals. Genet Sel Evol 2023; 55:83. [PMID: 38017417 PMCID: PMC10683324 DOI: 10.1186/s12711-023-00857-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed an association study for traits related to body size and muscular development in intensively selected beef cattle. We leveraged multiple trait information to refine and interpret the significant associations. RESULTS After a multiple-step genotype imputation to the sequence-level for 14,762 Belgian Blue beef (BBB) cows, we performed a genome-wide association study (GWAS) for 11 traits related to muscular development and body size. The 37 identified genome-wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated association signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple-trait approach to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were related to five (recessive) deleterious coding variants previously identified. CONCLUSIONS Our study further supports that a set of common genes controls body size across mammalian species. In particular, we added new genes to the list of those associated with height in both humans and cattle. We also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their causality. Several breed-specific recessive deleterious variants were identified in our QTL regions, probably as a result of the extreme selection for muscular development in BBB cattle.
Collapse
Affiliation(s)
- José Luis Gualdrón Duarte
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium.
- Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium.
| | - Can Yuan
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Ann-Stephan Gori
- Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium
| | - Gabriel C M Moreira
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Wouter Coppieters
- GIGA Genomic Platform, GIGA-R, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
| |
Collapse
|
5
|
Gao CW, Lin W, Riddle RC, Kushwaha P, Boukas L, Björnsson HT, Hansen KD, Fahrner JA. Novel mouse model of Weaver syndrome displays overgrowth and excess osteogenesis reversible with KDM6A/6B inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546270. [PMID: 37425751 PMCID: PMC10327066 DOI: 10.1101/2023.06.23.546270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Weaver syndrome is a Mendelian disorder of the epigenetic machinery (MDEM) caused by germline pathogenic variants in EZH2, which encodes the predominant H3K27 methyltransferase and key enzymatic component of Polycomb repressive complex 2 (PRC2). Weaver syndrome is characterized by striking overgrowth and advanced bone age, intellectual disability, and distinctive facies. We generated a mouse model for the most common Weaver syndrome missense variant, EZH2 p.R684C. Ezh2R684C/R684C mouse embryonic fibroblasts (MEFs) showed global depletion of H3K27me3. Ezh2R684C/+ mice had abnormal bone parameters indicative of skeletal overgrowth, and Ezh2R684C/+ osteoblasts showed increased osteogenic activity. RNA-seq comparing osteoblasts differentiated from Ezh2R684C/+ and Ezh2+/+ bone marrow mesenchymal stem cells (BM-MSCs) indicated collective dysregulation of the BMP pathway and osteoblast differentiation. Inhibition of the opposing H3K27 demethylases Kdm6a/6b substantially reversed the excessive osteogenesis in Ezh2R684C/+ cells both at the transcriptional and phenotypic levels. This supports both the ideas that writers and erasers of histone marks exist in a fine balance to maintain epigenome state, and that epigenetic modulating agents have therapeutic potential for the treatment of MDEMs.
Collapse
Affiliation(s)
- Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - WanYing Lin
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Priyanka Kushwaha
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leandros Boukas
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Hans T Björnsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspítali University Hospital, Reykjavík, Iceland
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Park S, Jang MA. Identification of SUZ12 Haploinsufficiency due to a 1.4-Mb Deletion at 17q11.2 in a Child With Overgrowth and Intellectual Disability Syndrome. Ann Lab Med 2023; 43:319-322. [PMID: 36544348 PMCID: PMC9791013 DOI: 10.3343/alm.2023.43.3.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/16/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Soyoung Park
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Mi-Ae Jang
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea,Corresponding author: Mi-Ae Jang, M.D., Ph.D. Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Korea Tel: +82-32-621-6725, Fax: +82-32-621-5944 E-mail:
| |
Collapse
|
7
|
Fan LL, Sheng Y, Wang CY, Li YL, Liu JS. Case Report: Congenital Brain Dysplasia, Developmental Delay and Intellectual Disability in a Patient With a 7q35-7q36.3 Deletion. Front Genet 2021; 12:761003. [PMID: 34925452 PMCID: PMC8671813 DOI: 10.3389/fgene.2021.761003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
7q terminal deletion syndrome is a rare condition presenting with multiple congenital malformations, including abnormal brain and facial structures, developmental delay, intellectual disability, abnormal limbs, and sacral anomalies. At least 40 OMIM genes located in the 7q34-7q36.3 region act as candidate genes for these phenotypes, of which SHH, EN2, KCNH2, RHEB, HLXB9, EZH2, MNX1 and LIMR1 may be the most important. In this study, we discuss the case of a 2.5-year-old male patient with multiple malformations, congenital brain dysplasia, developmental delay, and intellectual disability. A high-resolution genome-wide single nucleotide polymorphism array and real-time polymerase chain reaction were performed to detect genetic lesions. A de novo 9.4 Mb deletion in chromosome region 7q35-7q36.3 (chr7:147,493,985-156,774,460) was found. This chromosome region contains 68 genes, some of which are candidate genes for each phenotype. To the best of our knowledge, this is a rare case report of 7q terminal deletion syndrome in a Chinese patient. Our study identifies a rare phenotype in terms of brain structure abnormalities and cerebellar sulcus widening in patients with deletion in 7q35-7q36.3.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China.,Departments of Reproductive Genetics, HeBei General Hospital, ShiJiaZhuang, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Yue Sheng
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Chen-Yu Wang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Ya-Li Li
- Departments of Reproductive Genetics, HeBei General Hospital, ShiJiaZhuang, China
| | - Ji-Shi Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
8
|
Tosca L, Drévillon L, Mouka A, Lecerf L, Briand A, Ortonne V, Benoit V, Brisset S, Van Maldergem L, Laudouar Q, Heide S, Goossens M, Giurgea I, Tachdjian G, Métay C. Two new cases of interstitial 7q35q36.1 deletion including CNTNAP2 and KMT2C. Mol Genet Genomic Med 2021; 9:e1645. [PMID: 34582124 PMCID: PMC8606216 DOI: 10.1002/mgg3.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Terminal deletions of the long arm of chromosome 7 are well known and frequently associated with syndromic holoprosencephaly due to the involvement of the SHH (aliases HHG1, SMMCI, TPT, TPTPS, and MCOPCB5) gene region. However, interstitial deletions including CNTNAP2 (aliases Caspr2, KIAA0868, and NRXN4) and excluding the SHH region are less common. Methods We report the clinical and molecular characterization associated with pure 7q35 and 7q35q36.1 deletion in two unrelated patients as detected by oligonucleotide‐based array‐CGH analysis. Results The common clinical features were abnormal maternal serum screening during first‐trimester pregnancy, low occipitofrontal circumference at birth, hypotonia, abnormal feet, developmental delay, impaired language development, generalized seizures, hyperactive behavior, friendly personality, and cranio‐facial dysmorphism. Both deletions occurred de novo and sequencing of CNTNAP2, a candidate gene for epilepsy and autism showed absence of mutation on the contralateral allele. Conclusion Combined haploinsufficiency of GALNTL5 (alias GalNAc‐T5L), CUL1, SSPO (aliases SCO‐spondin, KIAA0543, and FLJ36112), AOC1(alias DAO), RHEB, and especially KMT2C (alias KIAA1506 and HALR) with monoallelic disruption of CNTNAP2 may explain neurologic abnormalities, hypotonia, and exostoses. Haploinsufficiency of PRKAG2 (aliases AAKG, AAKG2, H91620p, WPWS, and CMH6) and KCNH2 (aliases Kv11.1, HERG, and erg1) genes may be responsible of long QT syndrome observed for one patient.
Collapse
Affiliation(s)
- Lucie Tosca
- Service d'Histologie, Embryologie et Cytogénétique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Loïc Drévillon
- Service d'Histologie, Embryologie et Cytogénétique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Aurélie Mouka
- Service d'Histologie, Embryologie et Cytogénétique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Laure Lecerf
- Service de Biochimie et Génétique, AP-HP. Hôpitaux Universitaires Henri Mondor, Hôpital Henri Mondor, Créteil, France.,Institut National de la Santé et de la Recherche Médicale, U955, Créteil, France.,Faculté de Médecine, Université Paris-Est, Créteil, France
| | - Audrey Briand
- Service de Biochimie et Génétique, AP-HP. Hôpitaux Universitaires Henri Mondor, Hôpital Henri Mondor, Créteil, France
| | - Valérie Ortonne
- Service de Biochimie et Génétique, AP-HP. Hôpitaux Universitaires Henri Mondor, Hôpital Henri Mondor, Créteil, France
| | - Virginie Benoit
- Service d'Histologie, Embryologie et Cytogénétique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Sophie Brisset
- Service d'Histologie, Embryologie et Cytogénétique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | | | - Quitterie Laudouar
- Service de Réanimation Néonatale, AP-HP. Université Paris Saclay, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Solveig Heide
- UF Génétique Clinique, AP-HP. Sorbonne Université, Hôpital universitaire Pitié-Salpêtrière, Paris, France
| | - Michel Goossens
- Service de Biochimie et Génétique, AP-HP. Hôpitaux Universitaires Henri Mondor, Hôpital Henri Mondor, Créteil, France
| | - Irina Giurgea
- Département de Génétique Médicale, INSERM Childhood Genetic Diseases, AP-HP. Sorbonne Université, Hôpital Trousseau, Paris, France
| | - Gérard Tachdjian
- Service d'Histologie, Embryologie et Cytogénétique, AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Clamart, France
| | - Corinne Métay
- Service de Biochimie et Génétique, AP-HP. Hôpitaux Universitaires Henri Mondor, Hôpital Henri Mondor, Créteil, France
| |
Collapse
|
9
|
Cyrus S, Burkardt D, Weaver DD, Gibson WT. PRC2-complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:519-531. [PMID: 31724824 DOI: 10.1002/ajmg.c.31754] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
The EZH2, EED, and SUZ12 genes encode proteins that comprise core components of the polycomb repressive complex 2 (PRC2), an epigenetic "writer" with H3K27 methyltransferase activity, catalyzing the addition of up to three methyl groups on histone 3 at lysine residue 27 (H3K27). Partial loss-of-function variants in genes encoding the EZH2 and EED subunits of the complex lead to overgrowth, macrocephaly, advanced bone age, variable intellectual disability, and distinctive facial features. EZH2-associated overgrowth, caused by constitutional heterozygous mutations within Enhancer of Zeste homologue 2 (EZH2), has a phenotypic spectrum ranging from tall stature without obvious intellectual disability or dysmorphic features to classical Weaver syndrome (OMIM #277590). EED-associated overgrowth (Cohen-Gibson syndrome; OMIM #617561) is caused by germline heterozygous mutations in Embryonic Ectoderm Development (EED), and manifests overgrowth and intellectual disability (OGID), along with other features similar to Weaver syndrome. Most recently, rare coding variants in SUZ12 have also been described that present with clinical characteristics similar to the previous two syndromes. Here we review the PRC2 complex and clinical syndromes of OGID associated with core components EZH2, EED, and SUZ12.
Collapse
Affiliation(s)
- Sharri Cyrus
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deepika Burkardt
- Center for Human Genetics, University Hospitals Rainbow Babies and Children/Department of Genetics, Case Western Reserve University, Cleveland, Ohio
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Abstract
Polycomb repressive complex 2 (PRC2) is a conserved chromatin regulator that is responsible for the methylation of histone H3 lysine 27 (H3K27). PRC2 is essential for normal development and its loss of function thus results in a range of developmental phenotypes. Here, we review the latest advances in our understanding of mammalian PRC2 activity and present an updated summary of the phenotypes associated with its loss of function in mice. We then discuss recent studies that have highlighted regulatory interplay between the modifications laid down by PRC2 and other chromatin modifiers, including NSD1 and DNMT3A. Finally, we propose a model in which the dysregulation of these modifications at intergenic regions is a shared molecular feature of genetically distinct but highly phenotypically similar overgrowth syndromes in humans.
Collapse
Affiliation(s)
- Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Polonis K, Blackburn PR, Urrutia RA, Lomberk GA, Kruisselbrink T, Cousin MA, Boczek NJ, Hoppman NL, Babovic-Vuksanovic D, Klee EW, Pichurin PN. Co-occurrence of a maternally inherited DNMT3A duplication and a paternally inherited pathogenic variant in EZH2 in a child with growth retardation and severe short stature: atypical Weaver syndrome or evidence of a DNMT3A dosage effect? Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002899. [PMID: 29802153 PMCID: PMC6071565 DOI: 10.1101/mcs.a002899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/18/2018] [Indexed: 11/24/2022] Open
Abstract
Overgrowth syndromes are a clinically heterogeneous group of disorders characterized by localized or generalized tissue overgrowth and varying degrees of developmental and intellectual disability. An expanding list of genes associated with overgrowth syndromes include the histone methyltransferase genes EZH2 and NSD1, which cause Weaver and Sotos syndrome, respectively, and the DNA methyltransferase (DNMT3A) gene that results in Tatton-Brown–Rahman syndrome (TBRS). Here, we describe a 5-year-old female with a paternally inherited pathogenic mutation in EZH2 (c.2050C>T, p.Arg684Cys) and a maternally inherited 505-kb duplication of uncertain significance at 2p23.3 (encompassing five genes, including DNMT3A) who presented with intrauterine growth restriction, slow postnatal growth, short stature, hypotonia, developmental delay, and neuroblastoma diagnosed at the age of 8 mo. Her father had tall stature, dysmorphic facial features, and intellectual disability consistent with Weaver syndrome, whereas her mother had short stature, cognitive delays, and chronic nonprogressive leukocytosis. It has been previously shown that EZH2 directly controls DNA methylation through physical association with DNMTs, including DNMT3A, with concomitant H3K27 methylation and CpG promoter methylation leading to repression of EZH2 target genes. Interestingly, NSD1 is involved in H3K36 methylation, a mark associated with transcriptional activation, and exhibits exquisite dosage sensitivity leading to overgrowth when deleted and severe undergrowth when duplicated in vivo. Although there is currently no evidence of dosage effects for DNMT3A, the co-occurrence of a duplication involving this gene and a pathogenic alteration in EZH2 in a patient with severe undergrowth is suggestive of a similar paradigm and further study is warranted.
Collapse
Affiliation(s)
- Katarzyna Polonis
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Patrick R Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Raul A Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Mayo Clinic, Rochester, Minnesota 55905, USA.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Gwen A Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Mayo Clinic, Rochester, Minnesota 55905, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Teresa Kruisselbrink
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Margot A Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nicole J Boczek
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Nicole L Hoppman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Dusica Babovic-Vuksanovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Eric W Klee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Pavel N Pichurin
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
13
|
Functional analysis of the cfdp1 gene in zebrafish provides evidence for its crucial role in craniofacial development and osteogenesis. Exp Cell Res 2017; 361:236-245. [PMID: 29107067 DOI: 10.1016/j.yexcr.2017.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
Abstract
The CFDP1 proteins have been linked to craniofacial development and osteogenesis in vertebrates, though specific human syndromes have not yet been identified. Alterations of craniofacial development represent the main cause of infant disability and mortality in humans. For this reason, it is crucial to understand the cellular functions and mechanism of action of the CFDP1 protein in model vertebrate organisms. Using a combination of genomic, molecular and cell biology approaches, we have performed a functional analysis of the cfdp1 gene and its encoded protein, zCFDP1, in the zebrafish model system. We found that zCFDP1 is present in the zygote, is rapidly produced after MTZ transition and is highly abundant in the head structures. Depletion of zCFDP1, induced by an ATG-blocking morpholino, produces considerable defects in craniofacial structures and bone mineralization. Together, our results show that zCFDP1 is an essential protein required for proper development and provide the first experimental evidence showing that in vertebrates it actively participates to the morphogenesis of craniofacial territories.
Collapse
|