1
|
Rísová V, Saade R, Jakuš V, Gajdošová L, Varga I, Záhumenský J. Preconceptional and Periconceptional Folic Acid Supplementation in the Visegrad Group Countries for the Prevention of Neural Tube Defects. Nutrients 2024; 17:126. [PMID: 39796560 PMCID: PMC11723246 DOI: 10.3390/nu17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development. Randomized trials have shown that FA supplementation during preconceptional and periconceptional periods reduces the incidence of NTDs by nearly 80%. Consequently, it is recommended that all women of reproductive age take 400 µg of FA daily. Many countries have introduced FA fortification of staple foods to prevent NTDs, addressing the high rate of unplanned pregnancies. These policies have increased FA intake and decreased NTD incidence. Although the precise mechanisms by which FA protects against NTDs remain unclear, compelling evidence supports its efficacy in preventing most NTDs, leading to national recommendations for FA supplementation in women. This review focuses on preconceptional and periconceptional FA supplementation in the female population of the Visegrad Group countries (Slovakia, Czech Republic, Poland, and Hungary). Our findings emphasize the need for a comprehensive approach to NTDs, including FA supplementation programs, tailored counseling, and effective national-level policies.
Collapse
Affiliation(s)
- Vanda Rísová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Rami Saade
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| | - Vladimír Jakuš
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Lívia Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.J.); (L.G.)
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia; (V.R.); (I.V.)
| | - Jozef Záhumenský
- 2nd Department of Gynecology and Obstetrics, University Hospital Bratislava and Comenius University, 821 01 Bratislava, Slovakia;
| |
Collapse
|
2
|
Aguayo-Gómez A, Luna-Muñoz L, Svyryd Y, Muñoz-Téllez LÁ, Mutchinick OM. Bayesian polygenic risk estimation approach to nuclear families with discordant sib-pairs for myelomeningocele. PLoS One 2024; 19:e0316378. [PMID: 39774454 PMCID: PMC11684611 DOI: 10.1371/journal.pone.0316378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Myelomeningocele (MMC) is the most severe and disabling form of spina bifida with chronic health multisystem complications and social and economic family and health systems burden. In the present study, we aimed to investigate the genetic risk estimate for MMC in a cohort of 203 Mexican nuclear families with discordant siblings for the defect. Utilizing a custom Illumina array, we analyzed 656 single nucleotide polymorphisms (SNPs) of 395 candidate genes to identify a polygenic risk profile for MMC. Through a family-based analysis employing the transmission disequilibrium test (TDT) and Bayesian analysis, we assessed risk alleles transmission and calculated conditional probabilities estimating a polygenic risk for MMC. Our findings reveal significant associations of six genes related to neural tube closure (PSMB4, ATIC, DKK2, PSEN2, C2CD3, and PLCB2), showing differences in risk allele transmission between affected and unaffected siblings. Bayesian analysis identified changes in the risk profile after initiating folic acid fortification in Mexico, showing an evident decline in the conditional risk from 1/156 to 1/304 respectively. Despite the decline, this represents a 5.84-fold increase in risk before fortification and a 2.99-fold increase post-fortification compared to the baseline risk level (1/910). Our study highlights the advantage of incorporating a Bayesian analytical methodology in families with discordant sib-pairs, offering insights into the polygenic risk estimate for MMC and, most probably, for other congenital malformations.
Collapse
Affiliation(s)
- Adolfo Aguayo-Gómez
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Leonora Luna-Muñoz
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Yevgeniya Svyryd
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Luis Ángel Muñoz-Téllez
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Osvaldo M. Mutchinick
- Department of Genetics, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| |
Collapse
|
3
|
Findley TO. ECI biocommentary: Tina O. Findley. Pediatr Res 2024; 96:1102. [PMID: 39256607 DOI: 10.1038/s41390-024-03556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Tina O Findley
- McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
4
|
Jiang C, Zhang S, Jiang L, Chen Z, Chen H, Huang J, Tang J, Luo X, Yang G, Liu J, Chi H. Precision unveiled: Synergistic genomic landscapes in breast cancer-Integrating single-cell analysis and decoding drug toxicity for elite prognostication and tailored therapeutics. ENVIRONMENTAL TOXICOLOGY 2024; 39:3448-3472. [PMID: 38450906 DOI: 10.1002/tox.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Globally, breast cancer, with diverse subtypes and prognoses, necessitates tailored therapies for enhanced survival rates. A key focus is glutamine metabolism, governed by select genes. This study explored genes associated with T cells and linked them to glutamine metabolism to construct a prognostic staging index for breast cancer patients for more precise medical treatment. METHODS Two frameworks, T-cell related genes (TRG) and glutamine metabolism (GM), stratified breast cancer patients. TRG analysis identified key genes via hdWGCNA and machine learning. T-cell communication and spatial transcriptomics emphasized TRG's clinical value. GM was defined using Cox analyses and the Lasso algorithm. Scores categorized patients as TRG_high+GM_high (HH), TRG_high+GM_low (HL), TRG_low+GM_high (LH), or TRG_low+GM_low (LL). Similarities between HL and LH birthed a "Mixed" class and the TRG_GM classifier. This classifier illuminated gene variations, immune profiles, mutations, and drug responses. RESULTS Utilizing a composite of two distinct criteria, we devised a typification index termed TRG_GM classifier, which exhibited robust prognostic potential for breast cancer patients. Our analysis elucidated distinct immunological attributes across the classifiers. Moreover, by scrutinizing the genetic variations across groups, we illuminated their unique genetic profiles. Insights into drug sensitivity further underscored avenues for tailored therapeutic interventions. CONCLUSION Utilizing TRG and GM, a robust TRG_GM classifier was developed, integrating clinical indicators to create an accurate predictive diagnostic map. Analysis of enrichment disparities, immune responses, and mutation patterns across different subtypes yields crucial subtype-specific characteristics essential for prognostic assessment, clinical decision-making, and personalized therapies. Further exploration is warranted into multiple fusions between metrics to uncover prognostic presentations across various dimensions.
Collapse
Affiliation(s)
- Chenglu Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zipei Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jingyi Tang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiufang Luo
- Geriatric department, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Hao Chi
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Cao R, Su Y, Li J, Ao R, Xu X, Liang Y, Liu Z, Yu Q, Xie J. Exploring research hotspots and future directions in neural tube defects field by bibliometric and bioinformatics analysis. Front Neurosci 2024; 18:1293400. [PMID: 38650623 PMCID: PMC11033379 DOI: 10.3389/fnins.2024.1293400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Background Neural tube defects (NTDs) is the most common birth defect of the central nervous system (CNS) which causes the death of almost 88,000 people every year around the world. Much efforts have been made to investigate the reasons that contribute to NTD and explore new ways to for prevention. We trawl the past decade (2013-2022) published records in order to get a worldwide view about NTDs research field. Methods 7,437 records about NTDs were retrieved from the Web of Science (WOS) database. Tools such as shell scripts, VOSviewer, SCImago Graphica, CiteSpace and PubTator were used for data analysis and visualization. Results Over the past decade, the number of publications has maintained an upward trend, except for 2022. The United States is the country with the highest number of publications and also with the closest collaboration with other countries. Baylor College of Medicine has the closest collaboration with other institutions worldwide and also was the most prolific institution. In the field of NTDs, research focuses on molecular mechanisms such as genes and signaling pathways related to folate metabolism, neurogenic diseases caused by neural tube closure disorders such as myelomeningocele and spina bifida, and prevention and treatment such as folate supplementation and surgical procedures. Most NTDs related genes are related to development, cell projection parts, and molecular binding. These genes are mainly concentrated in cancer, Wnt, MAPK, PI3K-Akt and other signaling pathways. The distribution of NTDs related SNPs on chromosomes 1, 3, 5, 11, 14, and 17 are relatively concentrated, which may be associated with high-risk of NTDs. Conclusion Bibliometric analysis of the literature on NTDs field provided the current status, hotspots and future directions to some extant. Further bioinformatics analysis expanded our understanding of NTDs-related genes function and revealed some important SNP clusters and loci. This study provided some guidance for further studies. More extensive cooperation and further research are needed to overcome the ongoing challenge in pathogenesis, prevention and treatment of NTDs.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
- Translational Medicine Research Centre, Shanxi Medical University, Taiyuan, China
| | - Yanbing Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiangchao Xu
- Sci-Tech Information and Strategic Research Center of Shanxi Province, Taiyuan, China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention of Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Han X, Cao X, Aguiar-Pulido V, Yang W, Karki M, Ramirez PAP, Cabrera RM, Lin YL, Wlodarczyk BJ, Shaw GM, Ross ME, Zhang C, Finnell RH, Lei Y. CIC missense variants contribute to susceptibility for spina bifida. Hum Mutat 2022; 43:2021-2032. [PMID: 36054333 PMCID: PMC9772115 DOI: 10.1002/humu.24460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Neural tube defects (NTDs) are congenital malformations resulting from abnormal embryonic development of the brain, spine, or spinal column. The genetic etiology of human NTDs remains poorly understood despite intensive investigation. CIC, homolog of the Capicua transcription repressor, has been reported to interact with ataxin-1 (ATXN1) and participate in the pathogenesis of spinocerebellar ataxia type 1. Our previous study demonstrated that CIC loss of function (LoF) variants contributed to the cerebral folate deficiency syndrome by downregulating folate receptor 1 (FOLR1) expression. Given the importance of folate transport in neural tube formation, we hypothesized that CIC variants could contribute to increased risk for NTDs by depressing embryonic folate concentrations. In this study, we examined CIC variants from whole-genome sequencing (WGS) data of 140 isolated spina bifida cases and identified eight missense variants of CIC gene. We tested the pathogenicity of the observed variants through multiple in vitro experiments. We determined that CIC variants decreased the FOLR1 protein level and planar cell polarity (PCP) pathway signaling in a human cell line (HeLa). In a murine cell line (NIH3T3), CIC loss of function variants downregulated PCP signaling. Taken together, this study provides evidence supporting CIC as a risk gene for human NTD.
Collapse
Affiliation(s)
- Xiao Han
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Vanessa Aguiar-Pulido
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Computer Science, University of Miami, Coral
Gables, FL 33146, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Paula Andrea Pimienta Ramirez
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Robert M. Cabrera
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Ying Linda Lin
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of
Medicine, Stanford, CA, USA
| | - M. Elizabeth Ross
- Center for Neurogenetics, Brain and Mind Research
Institute, Weill Cornell Medicine, New York, NY, USA
| | - Cuilian Zhang
- Department of Reproductive Medicine Center, Henan
Provincial People’s Hospital, People’s Hospital of Zhengzhou
University, Zhengzhou, Henan Province, People’s Republic of China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
- Departments of Molecular and Human Genetics and Medicine,
Baylor College of Medicine, Houston, TX 77031, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of
Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77031,
USA
| |
Collapse
|
7
|
Song X, Wei J, Shu J, Liu Y, Sun M, Zhu P, Qin J. Association of polymorphisms of FOLR1 gene and FOLR2 gene and maternal folic acid supplementation with risk of ventricular septal defect: a case-control study. Eur J Clin Nutr 2022; 76:1273-1280. [PMID: 35273364 DOI: 10.1038/s41430-022-01110-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES It was the first time to examine the role of maternal polymorphisms of FOLR1 gene and FOLR2 gene, as well as their interactions with maternal folic acid supplementation (FAS), in the risk of ventricular septal defect (VSD). METHODS A case-control study was conducted with 385 mothers of VSD infants and 652 controls. The exposures of interest were FAS and FOLR1 gene and FOLR2 gene polymorphisms. The logistic regression model was used for accessing the strength of association. RESULTS After controlling for the potential confounders, women who did not utilize folic acid had a substantially higher risk of VSD (aOR = 2.25; 95% CI: 1.48 to 3.43), compared to those who did. We also observed genetic polymorphisms of FOLR1 gene at rs2071010 (GA vs. GG: aOR = 0.63, 95%CI: 0.45 to 0.88) and rs11235462 (AA vs. TT: aOR = 0.53, 95%CI: 0.33 to 0.84), as well as FOLR2 gene at rs651646 (AA vs. TT: aOR = 0.46, 95%CI: 0.30 to 0.70), rs2298444 (CC vs. TT: aOR = 0.58, 95%CI: 0.36 to 0.91) and rs514933 (TC vs. TT: aOR = 0.57, 95%CI: 0.41 to 0.78) were associated with a lower risk of VSD. Furthermore, there was a statistically significant interaction between maternal FAS and genetic polymorphisms at rs514933 on the risk of VSD (FDR_P = 0.015). CONCLUSIONS The maternal genetic polymorphisms of the FOLR1 gene and FOLR2 gene, as well as FAS and their interactions, were shown to be significantly associated with the risk of VSD in offspring.
Collapse
Affiliation(s)
- Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China. .,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China. .,Hunan Provincial Key Laboratory of clinical epidemiology, Changsha, Hunan, China.
| |
Collapse
|
8
|
Wilson R, O'Connor D. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep 2021; 24:101617. [PMID: 34976673 PMCID: PMC8684027 DOI: 10.1016/j.pmedr.2021.101617] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
More evidence is available for maternal intake, absorption, distribution, tissue specific concentrations, and pregnancy outcomes with folic acid (fortification/supplementation) during preconception - first trimester. This Quality Improvement prevention review used expert guidelines/opinions, systematic reviews, randomized control trials/controlled clinical trials, and observational case control/case series studies, published in English, from 1990 to August 2021. Optimization for an oral maternal folic acid supplementation is difficult because it relies on folic acid dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and many other factors. There is continued use of high dose pre-food fortification 'RCT evidenced-based' folic acid supplementation for NTD recurrence pregnancy prevention. Innovation requires preconception and pregnancy use of 'carbon one nutrient' supplements (folic acid, vitamin B12, B6, choline), using the appropriate evidence, need to be considered. The consideration and adoption of directed personalized approaches for maternal complex risk could use serum folate testing for supplementation dosing choice. Routine daily folic acid dosing for low-risk women should consider a multivitamin with 0.4 mg of folic acid starting 3 months prior to conception until completion of breastfeeding. Routine folic acid dosing or preconception measurement of maternal serum folate (after 4-6 weeks of folate supplementation) could be considered for maternal complex risk group with genetic/medical/surgical co-morbidities. These new approaches for folic acid oral supplementation are required to optimize benefit (decreasing folate sensitive congenital anomalies; childhood morbidity) and minimizing potential maternal and childhood risk.
Collapse
Affiliation(s)
- R.D. Wilson
- Cumming School of Medicine, Department of Obstetrics and Gynecology, University of Calgary, FMC NT 435, 1403 29 St NW, Calgary, Alberta, Canada
| | - D.L. O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Hypoketotic hypoglycemia without neuromuscular complications in patients with SLC25A32 deficiency. Eur J Hum Genet 2021; 30:976-979. [PMID: 34764427 PMCID: PMC9349259 DOI: 10.1038/s41431-021-00995-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/15/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial flavin adenine dinucleotide (FAD) transporter deficiencies are new entities recently reported to cause a neuro-myopathic phenotype. We report three patients from two unrelated families who presented primarily with hypoketotic hypoglycemia. They all had acylcarnitine profiles suggestive of multiple acyl-CoA dehydrogenase deficiency (MADD) with negative next-generation sequencing of electron-transfer flavoprotein genes (ETFA, ETFB, and ETFDH). Whole exome sequencing revealed a homozygous c.272 G > T (p.Gly91Val) variant in exon 2 of the SLC25A32 gene. The three patients shared the same variant, and they all demonstrated similar clinical and biochemical improvement with riboflavin supplementation. To date, these are the first patients to be reported with hypoketotic hypoglycemia without the neuromuscular phenotype previously reported in patients with SLC25A32 deficiency.
Collapse
|
10
|
Lei M, Zhang D, Sun Y, Zou C, Wang Y, Hong Y, Jiao Y, Cai C. Web-based transcriptome analysis determines a sixteen-gene signature and associated drugs on hearing loss patients: A bioinformatics approach. J Clin Lab Anal 2021; 35:e24065. [PMID: 34758154 PMCID: PMC8649328 DOI: 10.1002/jcla.24065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hearing loss is becoming more and more general. It may occur at all age and affect the language learning ability of children and trigger serious social problems. Methods The hearing loss differentially expressed genes (HL‐DEGs) were recognized through a comparison with healthy subjects. The Gene Ontology (GO) analysis was executed by DAVID. The reactome analysis of HL‐DEGs was performed by Clue‐GO. Next, we used STRING, an online website, to identify crucial protein‐protein interactions among HL‐DEGs. Cytoscape software was employed to construct a protein‐protein interaction network. MCODE, a plug‐in of the Cytoscape software, was used for module analysis. Finally, we used DGIdb database to ascertain the targeted drugs for MCODE genes. Results Four hundred four HL‐DEGs were identified, among which the most up‐regulated 10 genes were AL008707.1, SDR42E1P5, BX005040.1, AL671883.2, MT1XP1, AC016957.1, U2AF1L5, XIST, DAAM2, and ADAMTS2, and the most down‐regulated 10 genes were ALOX15, PRSS33, IL5RA, SMPD3, IGHV1‐2, IGLV3‐9, RHOXF1P1, CACNG6, MYOM2, and RSAD2. Through STRING database and MCODE analysis, we finally got 16 MCODE genes. These genes can be regarded as hearing loss related genes. Through biological analysis, it is found that these genes are enriched in pathways related to apoptosis such as tumor necrosis factor. Among them, MMP8, LTF, ORM2, FOLR3, and TCN1 have corresponding targeted drugs. Foremost, MCODE genes should be investigated for its usefulness as a new biomarker for diagnosis and treatment. Conclusion In summary, our study produced a sixteen‐gene signature and associated drugs that could be diagnosis and treatment of hearing loss patients.
Collapse
Affiliation(s)
- Min Lei
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Dongdong Zhang
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yixin Sun
- School of Medicine, Xiamen University, Xiamen, China
| | - Cong Zou
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yue Wang
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yongjun Hong
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Yanchao Jiao
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chengfu Cai
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China.,Department of Otorhinolaryngology Head and Neck Surgery, Teaching Hospital of Fujian Medical University, Xiamen, China.,Department of Otorhinolaryngology - Head and Neck Surgery, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Wolujewicz P, Steele JW, Kaltschmidt JA, Finnell RH, Ross ME. Unraveling the complex genetics of neural tube defects: From biological models to human genomics and back. Genesis 2021; 59:e23459. [PMID: 34713546 DOI: 10.1002/dvg.23459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Neural tube defects (NTDs) are a classic example of preventable birth defects for which there is a proven-effective intervention, folic acid (FA); however, further methods of prevention remain unrealized. In the decades following implementation of FA nutritional fortification programs throughout at least 87 nations, it has become apparent that not all NTDs can be prevented by FA. In the United States, FA fortification only reduced NTD rates by 28-35% (Williams et al., 2015). As such, it is imperative that further work is performed to understand the risk factors associated with NTDs and their underlying mechanisms so that alternative prevention strategies can be developed. However, this is complicated by the sheer number of genes associated with neural tube development, the heterogeneity of observable phenotypes in human cases, the rareness of the disease, and the myriad of environmental factors associated with NTD risk. Given the complex genetic architecture underlying NTD pathology and the way in which that architecture interacts dynamically with environmental factors, further prevention initiatives will undoubtedly require precision medicine strategies that utilize the power of human genomics and modern tools for assessing genetic risk factors. Herein, we review recent advances in genomic strategies for discovering genetic variants associated with these defects, and new ways in which biological models, such as mice and cell culture-derived organoids, are leveraged to assess mechanistic functionality, the way these variants interact with other genetic or environmental factors, and their ultimate contribution to human NTD risk.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - John W Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Margaret Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Tamkeen N, AlOmar SY, Alqahtani SAM, Al-Jurayyan A, Farooqui A, Tazyeen S, Ahmad N, Ishrat R. Identification of the Key Regulators of Spina Bifida Through Graph-Theoretical Approach. Front Genet 2021; 12:597983. [PMID: 33889172 PMCID: PMC8056047 DOI: 10.3389/fgene.2021.597983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
Spina Bifida (SB) is a congenital spinal cord malformation. Efforts to discern the key regulators (KRs) of the SB protein-protein interaction (PPI) network are requisite for developing its successful interventions. The architecture of the SB network, constructed from 117 manually curated genes was found to self-organize into a scale-free fractal state having a weak hierarchical organization. We identified three modules/motifs consisting of ten KRs, namely, TNIP1, TNF, TRAF1, TNRC6B, KMT2C, KMT2D, NCOA3, TRDMT1, DICER1, and HDAC1. These KRs serve as the backbone of the network, they propagate signals through the different hierarchical levels of the network to conserve the network’s stability while maintaining low popularity in the network. We also observed that the SB network exhibits a rich-club organization, the formation of which is attributed to our key regulators also except for TNIP1 and TRDMT1. The KRs that were found to ally with each other and emerge in the same motif, open up a new dimension of research of studying these KRs together. Owing to the multiple etiology and mechanisms of SB, a combination of several biomarkers is expected to have higher diagnostic accuracy for SB as compared to using a single biomarker. So, if all the KRs present in a single module/motif are targetted together, they can serve as biomarkers for the diagnosis of SB. Our study puts forward some novel SB-related genes that need further experimental validation to be considered as reliable future biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Naaila Tamkeen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdullah Al-Jurayyan
- Immunology and HLA Section, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
13
|
Kakumoto M, Shimokawa K, Ueshima S, Hira D, Okano T. Effects of antiepileptic drugs' administration during pregnancy on the nerve cell proliferation and axonal outgrowth of human neuroblastoma SH-SY5Y nerve cells. Biochem Biophys Res Commun 2021; 554:151-157. [PMID: 33798941 DOI: 10.1016/j.bbrc.2021.03.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022]
Abstract
It has been suggested that the intelligence quotient of children born to pregnant women taking 1000 mg or more of valproic acid per day is lower than that of children born to pregnant women taking other antiepileptic drugs. However, the mechanism whereby intelligence quotient is decreased in children exposed to valproic acid during the fetal period has not yet been elucidated. Therefore, we used the human neuroblastoma cell line SH-SY5Y to evaluate the effects of antiepileptic drugs containing valproic acid on nerve cells. We assessed the anti-proliferative effects of drugs in these cells via WST-8 colorimetric assay, using the Cell Counting Kit-8. We also quantified drug effects on axonal elongation from images using ImageJ software. We also evaluated drug effects on mRNA expression levels on molecules implicated in nervous system development and folic acid uptake using real-time PCR. We observed that carbamazepine and lamotrigen were toxic to SH-SY5Y cells at concentrations >500 μM. In contrast, phenytoin and valproic acid were not toxic to these cells. Carbamazepine, lamotrigen, phenytoin, and valproic acid did not affect axonal outgrowth in SH-SY5Y cells. Sodium channel neuronal type 1a (SCN1A) mRNA expression-level ratios increased when valproic acid was supplemented to cells. The overexpression of SCN1A mRNA due to high valproic acid concentrations during the fetal period may affect neurodevelopment. However, since detailed mechanisms have not yet been elucidated, it is necessary to evaluate it by comparing cell axon elongation and SCN1A protein expression due to high-concentration valproic acid exposure.
Collapse
Affiliation(s)
- Mikio Kakumoto
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Kosuke Shimokawa
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Satoshi Ueshima
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Daiki Hira
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| | - Tomonobu Okano
- Laboratory of Clinical Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
14
|
Seelan RS, Mukhopadhyay P, Philipose J, Greene RM, Pisano MM. Gestational folate deficiency alters embryonic gene expression and cell function. Differentiation 2020; 117:1-15. [PMID: 33302058 DOI: 10.1016/j.diff.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Folic acid is a nutrient essential for embryonic development. Folate deficiency can cause embryonic lethality or neural tube defects and orofacial anomalies. Folate receptor 1 (Folr1) is a folate binding protein that facilitates the cellular uptake of dietary folate. To better understand the biological processes affected by folate deficiency, gene expression profiles of gestational day 9.5 (gd9.5) Folr1-/- embryos were compared to those of gd9.5 Folr1+/+ embryos. The expression of 837 genes/ESTs was found to be differentially altered in Folr1-/- embryos, relative to those observed in wild-type embryos. The 837 differentially expressed genes were subjected to Ingenuity Pathway Analysis. Among the major biological functions affected in Folr1-/- mice were those related to 'digestive system development/function', 'cardiovascular system development/function', 'tissue development', 'cellular development', and 'cell growth and differentiation', while the major canonical pathways affected were those associated with blood coagulation, embryonic stem cell transcription and cardiomyocyte differentiation (via BMP receptors). Cellular proliferation, apoptosis and migration were all significantly affected in the Folr1-/- embryos. Cranial neural crest cells (NCCs) and neural tube explants, grown under folate-deficient conditions, exhibited marked reduction in directed migration that can be attributed, in part, to an altered cytoskeleton caused by perturbations in F-actin formation and/or assembly. The present study revealed that several developmentally relevant biological processes were compromised in Folr1-/- embryos.
Collapse
Affiliation(s)
- R S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - P Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - J Philipose
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - R M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA.
| | - M M Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| |
Collapse
|
15
|
Taiwo TE, Cao X, Cabrera RM, Lei Y, Finnell RH. Approaches to studying the genomic architecture of complex birth defects. Prenat Diagn 2020; 40:1047-1055. [PMID: 32468575 DOI: 10.1002/pd.5760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
Abstract
Every year nearly 6 percent of children worldwide are born with a serious congenital malformation, resulting in death or lifelong disability. In the United States, birth defects remain one of the leading causes of infant mortality. Among the common structural congenital defects are conditions known as neural tube defects (NTDs). These are a class of malformation of the brain and spinal cord where the neural tube fails to close during the neurulation. Although NTDs remain among the most pervasive and debilitating of all human developmental anomalies, there is insufficient understanding of their etiology. Previous studies have proposed that complex birth defects like NTDs are likely omnigenic, involving interconnected gene regulatory networks with associated signals throughout the genome. Advances in technologies have allowed researchers to more critically investigate regulatory gene networks in ever increasing detail, informing our understanding of the genetic basis of NTDs. Employing a systematic analysis of these complex birth defects using massively parallel DNA sequencing with stringent bioinformatic algorithms, it is possible to approach a greater level of understanding of the genomic architecture underlying NTDs. Herein, we present a brief overview of different approaches undertaken in our laboratory to dissect out the genetics of susceptibility to NTDs. This involves the use of mouse models to identify candidate genes, as well as large scale whole genome/whole exome (WGS/WES) studies to interrogate the genomic landscape of NTDs. The goal of this research is to elucidate the gene-environment interactions contributing to NTDs, thus encouraging global research efforts in their prevention.
Collapse
Affiliation(s)
- Toluwani E Taiwo
- Rice University, Houston, Texas, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Xuanye Cao
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Cabrera
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Steele JW, Kim SE, Finnell RH. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects? Biochimie 2020; 173:27-32. [PMID: 32061804 DOI: 10.1016/j.biochi.2020.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 01/20/2023]
Abstract
Neural tube defects (NTDs) are a broad class of congenital birth defects that result from the failure of neural tube closure during neurulation. Folic acid supplementation has been shown to prevent the occurrence of NTDs by as much as 70% in some human populations, and folate deficiency in a pregnant woman is associated with increased risk for having an NTD affected infant. Thus, folate transport-related genes and genes involved in the subsequent folate-mediated one-carbon metabolic pathway have long been considered primary candidates to study the genetic etiology of human NTDs. Herein, we review the genes involved in folate transport and one-carbon metabolism thus far identified as contributing variants that influence human NTD risk, and place these findings in the context of our evolving understanding of the complex genetic architecture underlying these defects.
Collapse
Affiliation(s)
- John W Steele
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Sung-Eun Kim
- Department of Pediatrics, The University of Texas at Austin/Dell Medical School, Austin, TX, 78723, USA.
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Kobets A, Lee RP, Oriko D, Jackson E, Robinson S, Cohen A, Groves ML. Dual Myelomeningoceles in Twins: Case Report, Review, and Insights for Etiology. Pediatr Neurosurg 2020; 55:363-373. [PMID: 33264792 DOI: 10.1159/000511365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Despite folate supplementation, neural tube defects (NTDs) still occur in 0.5-1.0/1,000 pregnancies, with 30-50% not preventable with folate. Twinning has increased due to artificial fertilization and in itself predisposes to NTDs at a rate of 1.6/1,000. The contributions of genetic and environmental factors to myelomeningocele development remain poorly understood. Expression patterns of congenital pathologies in twins can sometimes provide etiological insight. Concordance of NTDs in twins is 0.03/1,000, with dual myelomeningocele reported in only 23 pairs, only one of which survived. We present the 24th pair, the 1st to maintain lower extremity motor function. We review all prior cases and discuss implications of twin concordance on the interplay of genetic and environmental influences. Case Report and Review: A new case of female monozygotic twins born to a well-nourished 24-year-old female is reported with details of perioperative care. Prenatal ultrasound showed L3-S4 and L5-S4 myelomeningoceles, Chiari II malformations, and ventriculomegaly. Copy number microarray was unrevealing. Each underwent uncomplicated repair on day of life 1, and ventriculoperitoneal shunt placement on days of life 10 and 16. Both had movement in the legs upon 6-week follow-up. All prior reported cases of concordant twin myelomeningoceles were abstracted and analyzed, revealing persistence of occurrence despite folate supplementation and a majority occurring in dizygotic pairs. The literature is also reviewed to summarize current knowledge of myelomeningocele pathophysiology as it relates to genetic and environmental influences. DISCUSSION Meticulous surgical and perioperative care allowed for early positive outcomes in each twin. However, etiopathogenesis remains elusive. In general, only of a minority of cases have underlying genetic lesions or clear environmental triggers. Concordance in monozygotic twins argues for a strong genetic influence; yet, literature review reveals a higher rate of concordant dizygotic twins. This, along with the observation of differing resultant phenotypes in monozygotic twins as seen in this case, prompts further investigation into nonfolate environmental influences. While efforts in genetic investigation should continue, the role of teratogens and exposures should not be minimized in research efforts, public health, and family counseling. Clinical genetic testing remains of limited utility in the majority of patients until more is known.
Collapse
Affiliation(s)
- Andrew Kobets
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan P Lee
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| | - David Oriko
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Jackson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan Cohen
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mari L Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW An update is presented regarding neural tube defects (NTDs) including spina bifida and anencephaly, which are among the most common serious birth defects world-wide. Decades of research suggest that no single factor is responsible for neurulation failure, but rather NTDs arise from a complex interplay of disrupted gene regulatory networks, environmental influences and epigenetic regulation. A comprehensive understanding of these dynamics is critical to advance NTD research and prevention. RECENT FINDINGS Next-generation sequencing has ushered in a new era of genomic insight toward NTD pathophysiology, implicating novel gene associations with human NTD risk. Ongoing research is moving from a candidate gene approach toward genome-wide, systems-based investigations that are starting to uncover genetic and epigenetic complexities that underlie NTD manifestation. SUMMARY Neural tube closure is critical for the formation of the human brain and spinal cord. Broader, more all-inclusive perspectives are emerging to identify the genetic determinants of human NTDs.
Collapse
Affiliation(s)
- Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
19
|
Gao X, Finnell RH, Wang H, Zheng Y. Network correlation analysis revealed potential new mechanisms for neural tube defects beyond folic acid. Birth Defects Res 2018; 110:982-993. [PMID: 29732722 DOI: 10.1002/bdr2.1336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are clinically significant congenital malformations which are known to be folic acid (FA) responsive, such that supplementation significantly reduces the prevalence of NTDs. Nonetheless, some individuals fail to respond to FA supplementation; hence NTDs remain a significant public health concern. The mechanisms that underlie the beneficial effects of FA supplementation remain poorly understood. Mouse models have been used extensively to study the mechanisms driving neural tube closure (NTC). METHODS Microarray data of GSE51285 was downloaded from the NCBI GEO database, which contains the RNA expression profiles of livers from five NTD mouse mutants (heterozygous females) and their corresponding wildtype (WT) controls. Those five NTD mutants have different responsiveness to FA supplementation. The differentially expressed genes (DEGs) between NTD heterozygous and WT mice, as well as the DEGs between FA-responsive and FA-resistant mutants were carefully examined. Weighted gene correlation network analysis (WGCNA) was performed in order to identify genes with high correlations to either FA responsiveness or NTDs, respectively. RESULTS In total, we identified 18 genes related to the pathogenesis of NTDs, as well as 55 genes related to FA responsiveness. Eight more candidate genes (Abcc3, Gsr, Gclc, Mthfd1, Gart, Bche, Slc25a32, and Slc44a2) were identified by examining the DEGs of those genes involved in the extended folate metabolic pathway between FA-responsive and FA-resistant mutants. CONCLUSIONS Those genes are involved in mitochondrial choline metabolism, de novo purine synthesis, and glutathione generation, suggesting that formate, choline, and manipulating antioxidant levels may be effective interventions in FA-resistant NTDs.
Collapse
Affiliation(s)
- Xiaoya Gao
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas.,Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yufang Zheng
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|