2
|
Daykin EC, Ryan E, Sidransky E. Diagnosing neuronopathic Gaucher disease: New considerations and challenges in assigning Gaucher phenotypes. Mol Genet Metab 2021; 132:49-58. [PMID: 33483255 PMCID: PMC7884077 DOI: 10.1016/j.ymgme.2021.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Gaucher disease (GD), resulting from biallelic mutations in the gene GBA1, is a monogenic recessively inherited Mendelian disorder with a wide range of phenotypic presentations. The more severe forms of the disease, acute neuronopathic GD (GD2) and chronic neuronopathic GD (GD3), also have a continuum of disease severity with an overlap in manifestations and limited genotype-phenotype correlation. In very young patients, assigning a definitive diagnosis can sometimes be challenging. Several recent studies highlight specific features of neuronopathic GD that may provide diagnostic clues. Distinguishing between the different GD types has important therapeutic implications. Currently there are limited treatment options specifically for neuronopathic GD due to the difficulty in delivering therapies across the blood-brain barrier. In this work, we present both classic and newly appreciated aspects of the Gaucher phenotype that can aid in discriminating between acute and chronic neuronopathic GD, and highlight the continuing therapeutic challenges.
Collapse
Affiliation(s)
- Emily C Daykin
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Emory Ryan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA.
| |
Collapse
|
3
|
Roshan Lal T, Seehra GK, Steward AM, Poffenberger CN, Ryan E, Tayebi N, Lopez G, Sidransky E. The natural history of type 2 Gaucher disease in the 21st century: A retrospective study. Neurology 2020; 95:e2119-e2130. [PMID: 32764102 DOI: 10.1212/wnl.0000000000010605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To gather natural history data to better understand the changing course of type 2 Gaucher disease (GD2) in order to guide future interventional protocols. METHODS A structured interview was conducted with parents of living or deceased patients with GD2. Retrospective information obtained included disease presentation, progression, medical and surgical history, medications, family history, management, complications, and cause of death, as well as the impact of disease on families. RESULTS Data from 23 patients were analyzed (20 deceased and 3 living), showing a mean age at death of 19.2 months, ranging from 3 to 55 months. Fourteen patients were treated with enzyme replacement therapy, 2 were treated with substrate reduction therapy, and 3 underwent bone marrow transplantation. Five patients received ambroxol and one was on N-acetylcysteine, both considered experimental treatments. Fifteen patients had gastrostomy tubes placed; 10 underwent tracheostomies. Neurologic disease manifestations included choking episodes, myoclonic jerks, autonomic dysfunction, apnea, seizures, and diminished blinking, all of which worsened as disease progressed. CONCLUSIONS Current available therapies appear to prolong life but do not alter neurologic manifestations. Despite aggressive therapeutic interventions, GD2 remains a progressive disorder with a devastating prognosis that may benefit from new treatment approaches.
Collapse
Affiliation(s)
- Tamanna Roshan Lal
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC
| | - Gurpreet K Seehra
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC
| | - Alta M Steward
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC
| | - Chelsie N Poffenberger
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC
| | - Emory Ryan
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC
| | - Nahid Tayebi
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC
| | - Grisel Lopez
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC
| | - Ellen Sidransky
- From the Section on Molecular Neurogenetics (T.R.L., G.K.S., A.M.S., C.P., E.R., N.T., G.L., E.S.), Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; and Genetics and Metabolism Rare Disease Institute (T.R.L.), Children's National Medical Center, Washington, DC.
| |
Collapse
|