1
|
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int J Mol Sci 2023; 24:16746. [PMID: 38069070 PMCID: PMC10706469 DOI: 10.3390/ijms242316746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95213 Catania, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, 95123 Catania, Italy; (F.C.); (S.D.M.); (C.B.); (V.M.)
| | - Vincenzo Montano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| | - Piervito Lopriore
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy (P.L.)
| |
Collapse
|
2
|
Platt I, Bisgin A, Kilavuz S. Ethylmalonic Encephalopathy: a literature review and two new cases of mild phenotype. Neurol Sci 2023; 44:3827-3852. [PMID: 37458841 DOI: 10.1007/s10072-023-06904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a rare intoxication-type metabolic disorder with multisystem involvement. It is caused by mutations in ETHE1, which encodes the ETHE1 enzyme in the mitochondrial matrix that plays a key role in hydrogen sulfide (H2S) detoxification acting as a sulphur dioxygenase. RESULTS This review focuses on the clinical, metabolic, genetic and neuroradiological features of 70 reported cases, including two new cases. The common manifestations of EE are psychomotor regression, hypotonia, developmental delay, petechia, pyramidal signs, chronic diarrhoea, orthostatic acrocyanosis and failure to thrive, respectively. A significant difference was found in EMA and C4 levels (p=0.003, p=0.0236) between classical and mild phenotypes. Urinary EMA, C4 and C5 levels were found to exhibit normal values in milder cases during attack-free periods. The most common ETHE1 gene homozygous state mutations were (p.R163Q) (c.488G>A), exon 4 deletion, (p.R163W)(c.487C>T), (p.Glu44ValfsTer62)(c.131_132delAG) and (p.M1I)(c.3G>T) mutations, respectively. Fifty-two patients underwent cranial MRI. Basal ganglia signal alterations were detected in 42 cases. Of the 70 cases, eight had a mild phenotype and slow neurological progression with low levels of ethylmalonic acid (EMA) and C4 acylcarnitine. The current age of alive patients in the published articles with mild phenotype was significantly higher than the classical phenotype. (p=0.002). Reducing the accumulation and inducing detoxification of sulfide is the main long-term treatment strategy for EE, including metronidazole, N-acetylcysteine (NAC), dietary modification, liver transplantation and continuous renal replacement therapy (CRRT). CONCLUSION Measuring EMA and C4 acylcarnitine during metabolic attacks is critical to diagnosing EE, allowing for early treatment initiation to prevent further encephalopathic crises. Experience with liver transplantation, diet and CRRT, is currently limited. An early multidisciplinary approach with combination therapies is vital to prevent irreversible neurological damage.
Collapse
Affiliation(s)
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey
| | - Sebile Kilavuz
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Marmara University Faculty of Medicine, İstanbul, Turkey.
| |
Collapse
|
3
|
Squires JE, Miethke AG, Valencia CA, Hawthorne K, Henn L, Van Hove JL, Squires RH, Bove K, Horslen S, Kohli R, Molleston JP, Romero R, Alonso EM, Bezerra JA, Guthery SL, Hsu E, Karpen SJ, Loomes KM, Ng VL, Rosenthal P, Mysore K, Wang KS, Friederich MW, Magee JC, Sokol RJ. Clinical spectrum and genetic causes of mitochondrial hepatopathy phenotype in children. Hepatol Commun 2023; 7:e0139. [PMID: 37184518 PMCID: PMC10187840 DOI: 10.1097/hc9.0000000000000139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Alterations in both mitochondrial DNA (mtDNA) and nuclear DNA genes affect mitochondria function, causing a range of liver-based conditions termed mitochondrial hepatopathies (MH), which are subcategorized as mtDNA depletion, RNA translation, mtDNA deletion, and enzymatic disorders. We aim to enhance the understanding of pathogenesis and natural history of MH. METHODS We analyzed data from patients with MH phenotypes to identify genetic causes, characterize the spectrum of clinical presentation, and determine outcomes. RESULTS Three enrollment phenotypes, that is, acute liver failure (ALF, n = 37), chronic liver disease (Chronic, n = 40), and post-liver transplant (n = 9), were analyzed. Patients with ALF were younger [median 0.8 y (range, 0.0, 9.4) vs 3.4 y (0.2, 18.6), p < 0.001] with fewer neurodevelopmental delays (40.0% vs 81.3%, p < 0.001) versus Chronic. Comprehensive testing was performed more often in Chronic than ALF (90.0% vs 43.2%); however, etiology was identified more often in ALF (81.3% vs 61.1%) with mtDNA depletion being most common (ALF: 77% vs Chronic: 41%). Of the sequenced cohort (n = 60), 63% had an identified mitochondrial disorder. Cluster analysis identified a subset without an underlying genetic etiology, despite comprehensive testing. Liver transplant-free survival was 40% at 2 years (ALF vs Chronic, 16% vs 65%, p < 0.001). Eighteen (21%) underwent transplantation. With 33 patient-years of follow-up after the transplant, 3 deaths were reported. CONCLUSIONS Differences between ALF and Chronic MH phenotypes included age at diagnosis, systemic involvement, transplant-free survival, and genetic etiology, underscoring the need for ultra-rapid sequencing in the appropriate clinical setting. Cluster analysis revealed a group meeting enrollment criteria but without an identified genetic or enzymatic diagnosis, highlighting the need to identify other etiologies.
Collapse
Affiliation(s)
- James E. Squires
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - C. Alexander Valencia
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Interpath Laboratory, Pendleton, Oregon, USA
| | - Kieran Hawthorne
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Lisa Henn
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Johan L.K. Van Hove
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Robert H. Squires
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Bove
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Simon Horslen
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohit Kohli
- Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Jean P. Molleston
- Indiana University-Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Rene Romero
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Estella M. Alonso
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Jorge A. Bezerra
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stephen L. Guthery
- University of Utah School of Medicine, Primary Children’s Hospital, Salt Lake City, Utah, USA
| | - Evelyn Hsu
- University of Washington School of Medicine and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Saul J. Karpen
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kathleen M. Loomes
- The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vicky L. Ng
- Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Krupa Mysore
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Kasper S. Wang
- Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Marisa W. Friederich
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - John C. Magee
- University of Michigan Hospitals and Health Centers, Ann Arbor, Michigan, USA
| | - Ronald J. Sokol
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
4
|
Kashima DT, Sloan-Heggen CM, Gottlieb-Smith RJ, Barone Pritchard A. An atypically mild case of ethylmalonic encephalopathy with pathogenic ETHE1 variant. Am J Med Genet A 2023; 191:1614-1618. [PMID: 36891747 DOI: 10.1002/ajmg.a.63176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
Ethylmalonic encephalopathy (EE) is a rare, severe, autosomal recessive condition caused by pathogenic variants in ETHE1 leading to progressive encephalopathy, hypotonia evolving to dystonia, petechiae, orthostatic acrocyanosis, diarrhea, and elevated ethylmalonic acid in urine. In this case report, we describe a patient with only mild speech and gross motor delays, subtle biochemical abnormalities, and normal brain imaging found to be homozygous for a pathogenic ETHE1 variant (c.586G>A) via whole exome sequencing. This case highlights the clinical heterogeneity of ETHE1 mutations and the utility of whole-exome sequencing in diagnosing mild cases of EE.
Collapse
Affiliation(s)
- Daniel T Kashima
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christina M Sloan-Heggen
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel J Gottlieb-Smith
- Division of Pediatric Neurology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda Barone Pritchard
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Depleted uranium causes renal mitochondrial dysfunction through the ETHE1/Nrf2 pathway. Chem Biol Interact 2023; 372:110356. [PMID: 36681261 DOI: 10.1016/j.cbi.2023.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
The kidney is the main organ affected by acute depleted uranium (DU) toxicity. The mechanism of nephrotoxicity induced by DU is complex and needs to be further explored. This study aimed to elucidate the function of mitochondrial dysfunction in nephrotoxicity generated by DU and confirm the latent mechanism. We verified that DU (2.5-10 mg/kg) caused mitochondrial dysfunction in male rat kidneys and decreased ATP content and the mitochondrial membrane potential. In addition, melatonin (20 mg/kg), as an antioxidant, alleviated DU-induced oxidative stress and mitochondrial dysfunction in male rats, further reducing kidney damage caused by DU. These results indicate that mitochondrial dysfunction plays a vital role in DU nephrotoxicity. When ethylmalonic encephalopathy 1 (ETHE1) was knocked down, DU-induced oxidative stress and mitochondrial dysfunction were increased, and renal injury was aggravated. When exogenous ETHE1 protein was applied to renal cells, the opposite changes were observed. We also found that ETHE1 knockdown increased the expression of NF-E2-related factor 2 (Nrf2), a vital oxidative stress regulator, and its downstream molecules heme oxygenase-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1). Nrf2 knockout also aggravated DU-induced oxidative stress, mitochondrial dysfunction, and kidney damage. In conclusion, DU causes oxidative stress and antioxidant defense imbalance in renal cells through the ETHE1/Nrf2 pathway, further causing mitochondrial dysfunction and ultimately leading to nephrotoxicity.
Collapse
|
6
|
Kožich V, Schwahn BC, Sokolová J, Křížková M, Ditroi T, Krijt J, Khalil Y, Křížek T, Vaculíková-Fantlová T, Stibůrková B, Mills P, Clayton P, Barvíková K, Blessing H, Sykut-Cegielska J, Dionisi-Vici C, Gasperini S, García-Cazorla Á, Haack TB, Honzík T, Ješina P, Kuster A, Laugwitz L, Martinelli D, Porta F, Santer R, Schwarz G, Nagy P. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H 2S homeostasis. Redox Biol 2022; 58:102517. [PMID: 36306676 PMCID: PMC9615310 DOI: 10.1016/j.redox.2022.102517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis. Cystathionine γ-lyase can compensate for decreased H2S synthesis in cystathionine β-synthase deficiency. Sulfide:quinone oxidoreductase deficiency is compatible with normal H2S plasma levels under non-stressed conditions. Persulfide dioxygenase deficiency (ethylmalonic encephalopathy) causes the largest accumulation of H2S among disorders of sulfur metabolism. Excess sulfite forms S-sulfocysteine and S-sulfohomocysteine, and interferes with vitamin B6 metabolism. S-sulfocysteine correlates directly with sulfite and is a stable biomarker of sulfite accumulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Corresponding author. Department of Pediatrics and Inherited Metabolic Disorders, Charles University, Medicine and General University Hospital in Prague, Ke Karlovu 2, 128 08, Praha 2, Czech Republic.
| | - Bernd C Schwahn
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tamas Ditroi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Youssef Khalil
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Vaculíková-Fantlová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Blanka Stibůrková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Institute of Rheumatology, Prague, Czech Republic
| | - Philippa Mills
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Holger Blessing
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Pediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Serena Gasperini
- Metabolic Rare Diseases Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Ángeles García-Cazorla
- Inborn Errors of Metabolism Unit, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Alice Kuster
- Center for Inborn Errors of Metabolism, Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Porta
- Department of Pediatrics, Metabolic diseases, AOU Città della Salute e della Scienza, University of Torino, Torino, Italy
| | - René Santer
- Department of Pediatrics, University Medical Centre Eppendorf, Hamburg, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany,Corresponding author. Institute of Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 4750674, Koeln, Germany.
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary,Department of Anatomy and Histology, ELKH-ÁTE Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary,Chemistry Institute, University of Debrecen, Debrecen, Hungary,Corresponding author. Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary.
| |
Collapse
|
7
|
Gene Therapy for Mitochondrial Diseases: Current Status and Future Perspective. Pharmaceutics 2022; 14:pharmaceutics14061287. [PMID: 35745859 PMCID: PMC9231068 DOI: 10.3390/pharmaceutics14061287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases (MDs) are a group of severe genetic disorders caused by mutations in the nuclear or mitochondrial genome encoding proteins involved in the oxidative phosphorylation (OXPHOS) system. MDs have a wide range of symptoms, ranging from organ-specific to multisystemic dysfunctions, with different clinical outcomes. The lack of natural history information, the limits of currently available preclinical models, and the wide range of phenotypic presentations seen in MD patients have all hampered the development of effective therapies. The growing number of pre-clinical and clinical trials over the last decade has shown that gene therapy is a viable precision medicine option for treating MD. However, several obstacles must be overcome, including vector design, targeted tissue tropism and efficient delivery, transgene expression, and immunotoxicity. This manuscript offers a comprehensive overview of the state of the art of gene therapy in MD, addressing the main challenges, the most feasible solutions, and the future perspectives of the field.
Collapse
|
8
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
9
|
Mateus I, Prip-Buus C. Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13680. [PMID: 34519030 PMCID: PMC9285505 DOI: 10.1111/eci.13680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND For a long time, hydrogen sulphide (H2 S) was considered only as a toxic gas, inhibiting mitochondrial respiration at the level of cytochrome c oxidase, and an environmental pollutant. Nowadays, H2 S is recognized as the third mammalian gasotransmitter, playing an important role in inflammation, septic shock, ischaemia reperfusion events, cardiovascular disease and more recently in liver physiology and chronic liver diseases such as non-alcoholic fatty liver disease (NAFLD). METHODS This narrative review is based on literature search using PubMed. RESULTS From a bioenergetic perspective, H2 S is a very unique molecule, serving as a mitochondrial poison at high concentrations or as an inorganic mitochondrial substrate at low concentrations. By using transgenic animal models to specifically modulate liver H2 S biosynthesis or exogenous compounds that release H2 S, several studies demonstrated that H2 S is a key player in liver glucose and lipid metabolism. Liver H2 S content and biosynthesis were also altered in NAFLD animal models with the in vivo administration of H2 S-releasing molecules preventing the further escalation into non-alcoholic-steatohepatitis. Liver steady-state levels of H2 S, and hence its cell signalling properties, are controlled by a tight balance between its biosynthesis, mainly through the transsulphuration pathway, and its mitochondrial oxidation via the sulphide oxidizing unit. However, studies investigating mitochondrial H2 S oxidation in liver dysfunction still remain scarce. CONCLUSIONS Since H2 S emerges as a key regulator of liver metabolism and metabolic flexibility, further understanding the physiological relevance of mitochondrial H2 S oxidation in liver energy homeostasis and its potential implication in chronic liver diseases are of great interest.
Collapse
Affiliation(s)
- Inês Mateus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| | - Carina Prip-Buus
- Institut Cochin, INSERM, CNRS, Université de Paris, Paris, France
| |
Collapse
|
10
|
Hertzog A, Selvanathan A, Tolun AA, Parayil Sankaran B, Bhattacharya K. Purpuric, delayed child: Beyond septicaemia and into inborn errors of metabolism. J Paediatr Child Health 2021; 57:1703-1706. [PMID: 33586825 DOI: 10.1111/jpc.15365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/17/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Ashley Hertzog
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Arthavan Selvanathan
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospitals' Network, Sydney, New South Wales, Australia
| | - Adviye A Tolun
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bindu Parayil Sankaran
- Genetic Metabolic Disorders Service, Sydney Children's Hospitals' Network, Sydney, New South Wales, Australia
| | - Kaustuv Bhattacharya
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospitals' Network, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Lim J, Shayota BJ, Lay E, Elsea SH, Bekheirnia MR, Tessier MEM, Kralik SF, Rice GM, Soler-Alfonso C, Scaglia F. Acute Strokelike Presentation and Long-term Evolution of Diffusion Restriction Pattern in Ethylmalonic Encephalopathy. J Child Neurol 2021; 36:841-852. [PMID: 33900143 DOI: 10.1177/08830738211006507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ethylmalonic encephalopathy is a rare autosomal recessive mitochondrial disorder caused by pathogenic biallelic variants in the ETHE1 gene. The phenotype of this disease has been attributed to deficiency in the mitochondrial sulfur dioxygenase leading to many downstream effects. Ethylmalonic encephalopathy classically presents with developmental regression, petechiae, acrocyanosis, and chronic diarrhea. The neurologic phenotype includes hypotonia, spastic diplegia, ataxia, and developmental delay. As more patients with this condition are described, the neurologic phenotype continues to expand. Although strokelike episodes or metabolic strokes have been studied in other mitochondrial disorders, they have not been thoroughly reported in this disorder. Herein, we describe 3 patients with ethylmalonic encephalopathy who presented clinically with strokelike episodes and strokelike abnormalities on brain magnetic resonance imaging in the setting of acute illness, and the long-term sequelae with evolution into cystic changes in one of these subjects.
Collapse
Affiliation(s)
- Jaehyung Lim
- Division of Pediatric Neurology and Developmental Neurosciences, 3989Baylor College of Medicine, Houston, TX, USA
| | - Brian J Shayota
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA
| | - Erica Lay
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA
| | - Mir Reza Bekheirnia
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA.,Renal Section, Department of Pediatrics, 3989Baylor College of Medicine, Houston, TX, USA
| | - Mary Elizabeth M Tessier
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition 3989Baylor College of Medicine Houston TX, USA
| | - Stephen F Kralik
- Department of Radiology, 3984Texas Children's Hospital, Houston, TX, USA
| | - Gregory M Rice
- Department of Pediatrics and the Waisman Center, 5232University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA.,Joint 3989BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| |
Collapse
|
12
|
Liu N, Xiao J, Gijavanekar C, Pappan KL, Glinton KE, Shayota BJ, Kennedy AD, Sun Q, Sutton VR, Elsea SH. Comparison of Untargeted Metabolomic Profiling vs Traditional Metabolic Screening to Identify Inborn Errors of Metabolism. JAMA Netw Open 2021; 4:e2114155. [PMID: 34251446 PMCID: PMC8276086 DOI: 10.1001/jamanetworkopen.2021.14155] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
IMPORTANCE Recent advances in newborn screening (NBS) have improved the diagnosis of inborn errors of metabolism (IEMs); however, many potentially treatable IEMs are not included on NBS panels, nor are they covered in standard, first-line biochemical testing. OBJECTIVE To examine the utility of untargeted metabolomics as a primary screening tool for IEMs by comparing the diagnostic rate of clinical metabolomics with the recommended traditional metabolic screening approach. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study compares data from 4464 clinical samples received from 1483 unrelated families referred for trio testing of plasma amino acids, plasma acylcarnitine profiling, and urine organic acids (June 2014 to October 2018) and 2000 consecutive plasma samples from 1807 unrelated families (July 2014 to February 2019) received for clinical metabolomic screening at a College of American Pathologists and Clinical Laboratory Improvement Amendments-certified biochemical genetics laboratory. Data analysis was performed from September 2019 to August 2020. EXPOSURES Metabolic and molecular tests performed at a genetic testing reference laboratory in the US and available clinical information for each patient were assessed to determine diagnostic rate. MAIN OUTCOMES AND MEASURES The diagnostic rate of traditional metabolic screening compared with clinical metabolomic profiling was assessed in the context of expanded NBS. RESULTS Of 1483 cases screened by the traditional approach, 912 patients (61.5%) were male and 1465 (98.8%) were pediatric (mean [SD] age, 4.1 [6.0] years; range, 0-65 years). A total of 19 families were identified with IEMs, resulting in a 1.3% diagnostic rate. A total of 14 IEMs were detected, including 3 conditions not included in the Recommended Uniform Screening Panel for NBS. Of the 1807 unrelated families undergoing plasma metabolomic profiling, 1059 patients (58.6%) were male, and 1665 (92.1%) were pediatric (mean [SD] age, 8.1 [10.4] years; range, 0-80 years). Screening identified 128 unique cases with IEMs, giving an overall diagnostic rate of 7.1%. In total, 70 different metabolic conditions were identified, including 49 conditions not presently included on the Recommended Uniform Screening Panel for NBS. CONCLUSIONS AND RELEVANCE These findings suggest that untargeted metabolomics provided a 6-fold higher diagnostic yield compared with the conventional screening approach and identified a broader spectrum of IEMs. Notably, with the expansion of NBS programs, traditional metabolic testing approaches identify few disorders beyond those covered on the NBS. These data support the capability of clinical untargeted metabolomics in screening for IEMs and suggest that broader screening approaches should be considered in the initial evaluation for metabolic disorders.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Jing Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Kirk L Pappan
- Metabolon, Inc, Durham, North Carolina
- Now with Owlstone Medical, Inc, Research Triangle Park, North Carolina
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Now with Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City
| | | | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| |
Collapse
|
13
|
Olivieri G, Martinelli D, Longo D, Grimaldi C, Liccardo D, Di Meo I, Pietrobattista A, Sidorina A, Semeraro M, Dionisi-Vici C. Ethylmalonic encephalopathy and liver transplantation: long-term outcome of the first treated patient. Orphanet J Rare Dis 2021; 16:229. [PMID: 34011365 PMCID: PMC8136189 DOI: 10.1186/s13023-021-01867-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a severe intoxication-type metabolic disorder with multisystem clinical features and leading to early death. In 2014, based on the promising results obtained by liver-targeted gene therapy in Ethe1-/- mouse model, we successfully attempted liver transplantation in a 9-month-old EE girl. Here we report her long-term follow-up, lasting over 6 years, with a comprehensive evaluation of clinical, instrumental and biochemical assessments. RESULTS Neurological signs initially reverted, with a clinical stabilization during the entire follow-up course. Accordingly, gross motor functions improved and then stabilized. Psychomotor evaluations documented an increasing communicative intent, the acquisition of new social skills and the capability to carry out simple orders. Neurophysiological assessments, which included EEG, VEP/ERG and BAEPs, remained unchanged. Brain MRI also stabilized, showing no further lesions and cerebral atrophy improvement. Compared to pre-transplant assessments, urinary ethylmalonic acid strikingly reduced, and plasma thiosulphate fully normalized. The child maintained good clinical conditions and never experienced metabolic crises nor epileptic seizures. CONCLUSIONS The long-term follow-up of the first EE transplanted patient demonstrates that liver transplantation stabilizes, or even improves, disease course, therefore representing a potentially elective option especially in early-diagnosed patients, such as those detected by newborn screening, before irreversible neurological damage occurs.
Collapse
Affiliation(s)
- Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Grimaldi
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Daniela Liccardo
- Division of Hepatology and Gastroenterology, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Pietrobattista
- Division of Hepatology and Gastroenterology, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Anna Sidorina
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Michela Semeraro
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
14
|
de Moura Alvorcem L, Britto R, Cecatto C, Cristina Roginski A, Rohden F, Nathali Scholl J, Guma FCR, Figueiró F, Umpierrez Amaral A, Zanatta G, Seminotti B, Wajner M, Leipnitz G. Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. J Neurochem 2021; 158:262-281. [PMID: 33837559 DOI: 10.1111/jnc.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/01/2022]
Abstract
Tissue accumulation and high urinary excretion of ethylmalonic acid (EMA) are found in ethylmalonic encephalopathy (EE), an inherited disorder associated with cerebral and cerebellar atrophy whose pathogenesis is poorly established. The in vitro and in vivo effects of EMA on bioenergetics and redox homeostasis were investigated in rat cerebellum. For the in vitro studies, cerebellum preparations were exposed to EMA, whereas intracerebellar injection of EMA was used for the in vivo evaluation. EMA reduced state 3 and uncoupled respiration in vitro in succinate-, glutamate-, and malate-supported mitochondria, whereas decreased state 4 respiration was observed using glutamate and malate. Furthermore, mitochondria permeabilization and succinate supplementation diminished the decrease in state 3 with succinate. EMA also inhibited the activity of KGDH, an enzyme necessary for glutamate oxidation, in a mixed manner and augmented mitochondrial efflux of α-ketoglutarate. ATP levels were markedly reduced by EMA, reflecting a severe bioenergetic disruption. Docking simulations also indicated interactions between EMA and KGDH and a competition with glutamate and succinate for their mitochondrial transporters. In vitro findings also showed that EMA decreased mitochondrial membrane potential and Ca2+ retention capacity, and induced swelling in the presence of Ca2+ , which were prevented by cyclosporine A and ADP and ruthenium red, indicating mitochondrial permeability transition (MPT). Moreover, EMA, at high concentrations, mildly increased ROS levels and altered antioxidant defenses in vitro and in vivo. Our data indicate that EMA-induced impairment of glutamate and succinate oxidation and MPT may contribute to the pathogenesis of the cerebellum abnormalities in EE.
Collapse
Affiliation(s)
- Leonardo de Moura Alvorcem
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Renata Britto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francieli Rohden
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fátima C R Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil
| | - Geancarlo Zanatta
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Hoytema van Konijnenburg EMM, Wortmann SB, Koelewijn MJ, Tseng LA, Houben R, Stöckler-Ipsiroglu S, Ferreira CR, van Karnebeek CDM. Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app. Orphanet J Rare Dis 2021; 16:170. [PMID: 33845862 PMCID: PMC8042729 DOI: 10.1186/s13023-021-01727-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disability (collectively 'treatable IDs'). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identification of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. METHODS Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classification of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is available. Data on clinical symptoms, diagnostic testing, treatment strategies, effects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. RESULTS Our review identified 116 treatable IDs (139 genes), of which 44 newly identified, belonging to 17 ICIMD categories. The most frequent therapeutic interventions were nutritional, pharmacological and vitamin and trace element supplementation. Evidence level varied from 1 to 3 (trials, cohort studies, case-control studies) for 19% and 4-5 (case-report, expert opinion) for 81% of treatments. Reported effects included improvement of clinical deterioration in 62%, neurological manifestations in 47% and development in 37%. CONCLUSION The number of treatable IDs identified by our literature review increased by more than one-third in eight years. Although there has been much attention to gene-based and enzyme replacement therapy, the majority of effective treatments are nutritional, which are relatively affordable, widely available and (often) surprisingly effective. We present a diagnostic algorithm (adjustable to local resources and expertise) and the updated App to facilitate a swift and accurate workup, prioritizing treatable IDs. Our digital tool is freely available as Native and Web App (www.treatable-id.org) with several novel features. Our Treatable ID endeavor contributes to the Treatabolome and International Rare Diseases Research Consortium goals, enabling clinicians to deliver rapid evidence-based interventions to our rare disease patients.
Collapse
Affiliation(s)
| | - Saskia B Wortmann
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Marina J Koelewijn
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura A Tseng
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands
| | | | - Sylvia Stöckler-Ipsiroglu
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, Vancouver, BC, V6H 3V4, Canada
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands.
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- On Behalf of United for Metabolic Diseases, Amsterdam, The Netherlands.
- Department of Pediatrics - Metabolic Diseases, Amalia Children's Hospital, Geert Grooteplein 10, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Kožich V, Majtan T. Inherited disorders of sulfur amino acid metabolism: recent advances in therapy. Curr Opin Clin Nutr Metab Care 2021; 24:62-70. [PMID: 33060459 DOI: 10.1097/mco.0000000000000705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Metabolism of sulfur amino acids (SAA) provides compounds important for many cellular functions. Inherited disorders of SAA metabolism are typically severe multisystemic diseases affecting brain, liver, connective tissue, or vasculature. The review summarizes the present therapeutic approaches and advances in identifying novel treatment targets, and provides an overview of new therapies. RECENT FINDINGS Current treatments of genetic disorders of SAA metabolism are primarily based on modulation of affected pathways by dietary measures and provision of lacking products or scavenging of toxic molecules. Recent studies identified additional therapeutic targets distant from the primary defects and explored ideas envisioning novel treatments, such as chaperone and gene therapy. Recombinant protein production and engineering resulted in development and clinical testing of enzyme therapies for cystathionine β-synthase deficiency, the most common inborn error of SAA metabolism. SUMMARY Complex regulation of pathways involved in SAA metabolism and cellular consequences of genetic defects in SAA metabolism are only partially understood. There is a pressing need to increase substantially our knowledge of the disease mechanisms to develop more effective therapies for patients suffering from these rare disorders.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Czech Republic
| | - Tomas Majtan
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
17
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
18
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
19
|
Zhou GP, Qu W, Zhu ZJ, Sun LY, Wei L, Zeng ZG, Liu Y. Compromised therapeutic value of pediatric liver transplantation in ethylmalonic encephalopathy: A case report. World J Gastroenterol 2020; 26:6295-6303. [PMID: 33177801 PMCID: PMC7596645 DOI: 10.3748/wjg.v26.i40.6295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a rare autosomal recessive metabolic disorder caused by impaired mitochondrial sulfur dioxygenase. Due to poor therapeutic effect of current conventional treatments, progressive psychomotor regression and neurological impairment usually contribute to early death in the first decade of life. Liver transplantation (LT) is emerging as a novel therapeutic option for EE; however, worldwide experience is still limited.
CASE SUMMARY An 18-mo-old patient with the diagnosis of EE received a living donor liver transplant in our institution, which, to our knowledge, is the first case in Asian-Pacific countries. During 20 mo of follow-up, the longitudinal metabolic evaluations revealed a wild fluctuation in urinary EMA levels, still far beyond the normal range. Urinary 2-methylsuccinic acid levels gradually restored to normal, whereas the concentrations of urinary isobutyrylglycine and plasma C4- and C5-acylcarnitines fluctuated markedly and still remained above the reference limits. Only mild amelioration of petechiae and ecchymosis was observed, and no dramatic reversion of chronic mucoid diarrhea and orthostatic acrocyanosis occurred. Although brain magnetic resonance imaging suggested a certain improvement in basal ganglia lesions, the patient still presented developmental delay and neurologic disability.
CONCLUSION LT may bring about a partial but not complete cure to EE. Given its definite role in defending against the devastating natural progression of EE, LT should still be considered for patients with EE in the absence of other superior therapeutic options. Early establishment of diagnosis and initiation of conventional treatment pre-transplant, timely LT, and continuous administration of metabolism-correcting medications post-transplant may be helpful in minimizing the neurologic impairment and maximizing the therapeutic value of LT in EE.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Ying Sun
- Liver Transplantation Center, Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Liu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
20
|
Grings M, Wajner M, Leipnitz G. Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cell Mol Neurobiol 2020; 42:565-575. [DOI: 10.1007/s10571-020-00976-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
|
21
|
Identification of a novel homozygous nonsense variant in a Chinese patient with ethylmalonic encephalopathy and a genotype-phenotype spectrum review. Clin Chim Acta 2020; 509:8-17. [DOI: 10.1016/j.cca.2020.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
|
22
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
23
|
Almannai M, El-Hattab AW, Ali M, Soler-Alfonso C, Scaglia F. Clinical trials in mitochondrial disorders, an update. Mol Genet Metab 2020; 131:1-13. [PMID: 33129691 PMCID: PMC7537630 DOI: 10.1016/j.ymgme.2020.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial disorders comprise a molecular and clinically diverse group of diseases that are associated with mitochondrial dysfunction leading to multi-organ disease. With recent advances in molecular technologies, the understanding of the pathomechanisms of a growing list of mitochondrial disorders has been greatly expanded. However, the therapeutic approaches for mitochondrial disorders have lagged behind with treatment options limited mainly to symptom specific therapies and supportive measures. There is an increasing number of clinical trials in mitochondrial disorders aiming for more specific and effective therapies. This review will cover different treatment modalities currently used in mitochondrial disorders, focusing on recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
24
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
25
|
Madaan P, Saini L, Vyas S, Attri SV, Sahu JK. Mystery Case: An infant with developmental delay, epileptic spasms, and acrocyanosis. Neurology 2020; 94:939-942. [PMID: 32366539 DOI: 10.1212/wnl.0000000000009479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Priyanka Madaan
- From the Pediatric Neurology Unit (P.M., L.S., J.K.S.) and Department of Pediatrics (S.V.A.), Advanced Pediatrics Centre, and Department of Radiodiagnosis and Imaging, Section of Neuroimaging and Interventional Radiology (S.V.), Postgraduate Institute of Medical Education and Research, Chandigarh; and Council of Scientific and Industrial Research (P.M.), New Delhi, India
| | - Lokesh Saini
- From the Pediatric Neurology Unit (P.M., L.S., J.K.S.) and Department of Pediatrics (S.V.A.), Advanced Pediatrics Centre, and Department of Radiodiagnosis and Imaging, Section of Neuroimaging and Interventional Radiology (S.V.), Postgraduate Institute of Medical Education and Research, Chandigarh; and Council of Scientific and Industrial Research (P.M.), New Delhi, India
| | - Sameer Vyas
- From the Pediatric Neurology Unit (P.M., L.S., J.K.S.) and Department of Pediatrics (S.V.A.), Advanced Pediatrics Centre, and Department of Radiodiagnosis and Imaging, Section of Neuroimaging and Interventional Radiology (S.V.), Postgraduate Institute of Medical Education and Research, Chandigarh; and Council of Scientific and Industrial Research (P.M.), New Delhi, India
| | - Savita Verma Attri
- From the Pediatric Neurology Unit (P.M., L.S., J.K.S.) and Department of Pediatrics (S.V.A.), Advanced Pediatrics Centre, and Department of Radiodiagnosis and Imaging, Section of Neuroimaging and Interventional Radiology (S.V.), Postgraduate Institute of Medical Education and Research, Chandigarh; and Council of Scientific and Industrial Research (P.M.), New Delhi, India
| | - Jitendra Kumar Sahu
- From the Pediatric Neurology Unit (P.M., L.S., J.K.S.) and Department of Pediatrics (S.V.A.), Advanced Pediatrics Centre, and Department of Radiodiagnosis and Imaging, Section of Neuroimaging and Interventional Radiology (S.V.), Postgraduate Institute of Medical Education and Research, Chandigarh; and Council of Scientific and Industrial Research (P.M.), New Delhi, India.
| |
Collapse
|
26
|
Chen X, Han L, Yao H. Novel Compound Heterozygous Variants of ETHE1 Causing Ethylmalonic Encephalopathy in a Chinese Patient: A Case Report. Front Genet 2020; 11:341. [PMID: 32362910 PMCID: PMC7181787 DOI: 10.3389/fgene.2020.00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/23/2020] [Indexed: 01/22/2023] Open
Abstract
Ethylmalonic encephalopathy (EE) is a very rare autosomal recessive metabolic disorder that primarily affects children. Less than one hundred EE patients have been diagnosed worldwide. The clinical manifestations include chronic diarrhea, petechiae, orthostatic acrocyanosis, psychomotor delay and regression, seizures, and hypotonia. The ETHE1 gene has been shown to be associated with EE, and genetic sequencing provides concrete evidence for diagnosis. To date, only 37 variants of ETHE1 have been reported as disease-causing in EE patients. We identified two novel ETHE1 variants, i.e., c.595+1G>T at the canonical splice site and the missense variant c.586G>C (p. D196H), in a 3-year-old Chinese boy with EE. The patient had mild symptoms with only chronic diarrhea. The typical symptoms, including spontaneous petechiae, acrocyanosis, and hypotonia, were all absent. Herein, we report on the clinical, biochemical, and genetic findings of our patient and review the phenotypes and genotypes of all patients with EE caused by ETHE1 variants with available information. This study supports the early assessment and diagnosis of EE.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Han
- Running Gene Inc., Beijing, China
| | - Hui Yao
- Department of Endocrinology and Metabolism, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Pillai NR, AlDhaheri NS, Ghosh R, Lim J, Streff H, Nayak A, Graham BH, Hanchard NA, Elsea SH, Scaglia F. Biallelic variants in
COX4I1
associated with a novel phenotype resembling Leigh syndrome with developmental regression, intellectual disability, and seizures. Am J Med Genet A 2019; 179:2138-2143. [DOI: 10.1002/ajmg.a.61288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Nishitha R. Pillai
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
| | - Noura S. AlDhaheri
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
- Department of PediatricsCollege of Medicine and Health Sciences, United Arab Emirates University Al Ain UAE
| | - Rajarshi Ghosh
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| | - Jaehyung Lim
- Texas Children's Hospital Houston Texas
- Department of NeurologyBaylor College of Medicine Houston Texas
| | - Haley Streff
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
| | - Anuranjita Nayak
- Texas Children's Hospital Houston Texas
- Department of NeurologyBaylor College of Medicine Houston Texas
| | - Brett H. Graham
- Department of Medical and Molecular GeneticsIndiana University School of Medicine Indianapolis Indiana
| | - Neil A. Hanchard
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
| | - Sarah H. Elsea
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| | - Fernando Scaglia
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
- Joint BCM‐CUHK Center of Medical GeneticsPrince of Wales Hospital ShaTin Hong Kong SAR
| |
Collapse
|