1
|
Yang D, Huang H, Zeng T, Wang L, Ying C, Chen X, Zhou X, Sun F, Chen Y, Li S, Wang B, Wu S, Xie F, Cen Z, Luo W. Unveiling distinct clinical manifestations of primary familial brain calcifications in Asian and European patients: A study based on 10-year individual-level data. Parkinsonism Relat Disord 2025; 132:107290. [PMID: 39827654 DOI: 10.1016/j.parkreldis.2025.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Primary Familial Brain Calcification (PFBC) can manifest clinically with a complex and heterogeneous array of symptoms, including parkinsonism, dysarthria, and cognitive impairment. However, the distinct presentations of PFBC in Asian and European populations remain unclear. METHODS We conducted a systematic search of PubMed for studies involving genetically confirmed PFBC patients. Demographic data, genetic information, radiological examinations, and clinical characteristics were extracted for each case. RESULTS The study included 120 publications and 564 genetically confirmed PFBC patients. Asian and European PFBC populations represented 54 % and 37 % of global patients, respectively. While calcification patterns showed no significant differences between Asian and European PFBC patients, European autosomal dominant PFBC variant carriers were more likely to exhibit clinical symptoms compared to their Asian counterparts (OR = 2.90, 95 % CI 1.55-5.60) and had an earlier estimated age of onset (median age 42 vs 58). CONCLUSION The interaction between regional differences and genetically determined calcification severity may collectively influence PFBC symptom progression. Future research should further explore the potential roles of gene modifiers, ethnic background, socioeconomic and environmental exposure factors underlying regional differences in PFBC progression.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinbo Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyue Sun
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yilin Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Iznardo H, Bredrup C, Bernal S, Gladkauskas T, Mascaró JM, Roé E, Baselga E. Clinical and molecular response to dasatinib in an adult patient with Penttinen syndrome. Am J Med Genet A 2021; 188:1233-1238. [PMID: 34894066 DOI: 10.1002/ajmg.a.62603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/08/2021] [Accepted: 11/28/2021] [Indexed: 11/12/2022]
Abstract
Penttinen type of premature aging syndrome is an autosomal-dominant disorder that can be caused by the c.1994T>A pVal665Ala pathogenic variant in platelet-derived growth factor receptor-B (PDGFRB). Imatinib, a receptor tyrosine kinase (RTK) inhibitor, has been used in Penttinen syndrome (PS) patients with good results. A 21-year-old male presented shortly after birth with a prematurely aged appearance with distinctive facial features and cutaneous atrophy with hypertrophic scar-like lesions. Generalized brachydactyly with acro-osteolysis was observed. Flexion contractures limited his daily activities. Cognitive impairment was not present. Genetic testing found a heterozygous variant c.1994T>A pVal665Ala in exon 14 of PDGFRB. A diagnosis of PS was made and imatinib treatment was started with partial response. After lack of further improvement, in vitro molecular studies with imatinib and dasatinib showed that the Val665Ala variant had greater sensitivity to dasatinib than imatinib. This was seen examining levels of P-PDGFRB directly and on downstream ligands P-AKT and P-STAT. Improved clinical response was observed after treatment with dasatinib. We report a new case of PS with clinical and molecular response to dasatinib after incomplete response to imatinib. Our work provides further molecular and clinical evidence of RTK inhibitors' efficacy in this rare disorder.
Collapse
Affiliation(s)
- Helena Iznardo
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cecilie Bredrup
- Department of Ophthalmology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sara Bernal
- Genetics Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U705). IICS-Madrid, Spain
| | - Titas Gladkauskas
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - José-Manuel Mascaró
- Department of Dermatology, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Esther Roé
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Guérit E, Arts F, Dachy G, Boulouadnine B, Demoulin JB. PDGF receptor mutations in human diseases. Cell Mol Life Sci 2021; 78:3867-3881. [PMID: 33449152 PMCID: PMC11072557 DOI: 10.1007/s00018-020-03753-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
PDGFRA and PDGFRB are classical proto-oncogenes that encode receptor tyrosine kinases responding to platelet-derived growth factor (PDGF). PDGFRA mutations are found in gastrointestinal stromal tumors (GISTs), inflammatory fibroid polyps and gliomas, and PDGFRB mutations drive myofibroma development. In addition, chromosomal rearrangement of either gene causes myeloid neoplasms associated with hypereosinophilia. Recently, mutations in PDGFRB were linked to several noncancerous diseases. Germline heterozygous variants that reduce receptor activity have been identified in primary familial brain calcification, whereas gain-of-function mutants are present in patients with fusiform aneurysms, Kosaki overgrowth syndrome or Penttinen premature aging syndrome. Functional analysis of these variants has led to the preclinical validation of tyrosine kinase inhibitors targeting PDGF receptors, such as imatinib, as a treatment for some of these conditions. This review summarizes the rapidly expanding knowledge in this field.
Collapse
Affiliation(s)
- Emilie Guérit
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Florence Arts
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Guillaume Dachy
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Boutaina Boulouadnine
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Box B1.74.05, 1200, Brussels, Belgium.
| |
Collapse
|
5
|
Wenger TL, Bly RA, Wu N, Albert CM, Park J, Shieh J, Chenbhanich J, Heike CL, Adam MP, Chang I, Sun A, Miller DE, Beck AE, Gupta D, Boos MD, Zackai EH, Everman D, Ganapathi S, Wilson M, Christodoulou J, Zarate YA, Curry C, Li D, Guimier A, Amiel J, Hakonarson H, Webster R, Bhoj EJ, Perkins JA, Dahl JP, Dobyns WB. Activating variants in PDGFRB result in a spectrum of disorders responsive to imatinib monotherapy. Am J Med Genet A 2020; 182:1576-1591. [PMID: 32500973 DOI: 10.1002/ajmg.a.61615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 11/09/2022]
Abstract
More than 50 individuals with activating variants in the receptor tyrosine kinase PDGFRB have been reported, separated based on clinical features into solitary myofibromas, infantile myofibromatosis, Penttinen syndrome with premature aging and osteopenia, Kosaki overgrowth syndrome, and fusiform aneurysms. Despite their descriptions as distinct clinical entities, review of previous reports demonstrates substantial phenotypic overlap. We present a case series of 12 patients with activating variants in PDGFRB and review of the literature. We describe five patients with PDGFRB activating variants whose clinical features overlap multiple diagnostic entities. Seven additional patients from a large family had variable expressivity and late-onset disease, including adult onset features and two individuals with sudden death. Three patients were treated with imatinib and had robust and rapid response, including the first two reported infants with multicentric myofibromas treated with imatinib monotherapy and one with a recurrent p.Val665Ala (Penttinen) variant. Along with previously reported individuals, our cohort suggests infants and young children had few abnormal features, while older individuals had multiple additional features, several of which appeared to worsen with advancing age. Our analysis supports a diagnostic entity of a spectrum disorders due to activating variants in PDGFRB. Differences in reported phenotypes can be dramatic and correlate with advancing age, genotype, and to mosaicism in some individuals.
Collapse
Affiliation(s)
- Tara L Wenger
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Randall A Bly
- Department of Otolaryngology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Natalie Wu
- Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Catherine M Albert
- Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Julie Park
- Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Joseph Shieh
- Division of Medical Genetics, Benioff Children's Hospital and Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Jirat Chenbhanich
- Division of Medical Genetics, Benioff Children's Hospital and Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Carrie L Heike
- Division of Craniofacial Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Margaret P Adam
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Irene Chang
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Angela Sun
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Danny E Miller
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Anita E Beck
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Deepti Gupta
- Division of Dermatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Markus D Boos
- Division of Dermatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David Everman
- Greenwood Genetics Center, Greenville, South Carolina, USA
| | - Shireen Ganapathi
- Division of Hematology/Oncology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Meredith Wilson
- Department of Clinical Genetics, Sydney Children's Hospitals Network-Westmead, University of Sydney, Sydney, New South Wales, Australia.,Division of Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cynthia Curry
- Division of Medical Genetics, Benioff Children's Hospital and Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anne Guimier
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Richard Webster
- Department of Neurology, Sydney Children's Hospital Network, Westmead, New South Wales, Australia
| | - Elizabeth J Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan A Perkins
- Department of Otolaryngology, Seattle Children's Hospital, Seattle, Washington, USA
| | - John P Dahl
- Department of Otolaryngology, Seattle Children's Hospital, Seattle, Washington, USA
| | - William B Dobyns
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|