1
|
Tsukamoto Y, Okajima T. O-GlcNAc glycans in the mammalian extracellular environment. Carbohydr Res 2025; 549:109378. [PMID: 39813972 DOI: 10.1016/j.carres.2025.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Extracellular O-GlcNAc is a unique post-translational modification that occurs in the epidermal growth factor-like (EGF) domain of the endoplasmic reticulum (ER) lumen. The EGF domain-specific O-GlcNAc transferase (EOGT), catalyzes the transfer of O-GlcNAc to serine/threonine residues of the C-terminal EGF domain. Thus, EOGT-dependent O-GlcNAc modifications are mainly found in selective proteins that are localized in the extracellular spaces or extracellular regions of membrane proteins. In mammals, O-GlcNAc glycans can be extended to oligosaccharide structures similar to other types of EGF domain-specific O-glycans. The in vivo importance of O-GlcNAc glycans in mammals has been demonstrated in a human congenital disease caused by EOGT mutations and is extensively supported by genetic deletion in mice. This article reviews the findings on the structure and biochemical mechanism of EOGT-catalyzed O-GlcNAc biosynthesis, modified proteins, and in vivo functions elucidated by recent research in mammals.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
2
|
Nauman M, Varshney S, Choi J, Augenlicht LH, Stanley P. EOGT enables residual Notch signaling in mouse intestinal cells lacking POFUT1. Sci Rep 2023; 13:17473. [PMID: 37838775 PMCID: PMC10576774 DOI: 10.1038/s41598-023-44509-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023] Open
Abstract
Notch signaling determines cell fates in mouse intestine. Notch receptors contain multiple epidermal growth factor-like (EGF) repeats modified by O-glycans that regulate Notch signaling. Conditional deletion of protein O-fucosyltransferase 1 (Pofut1) substantially reduces Notch signaling and markedly perturbs lineage development in mouse intestine. However, mice with inactivated Pofut1 are viable, whereas complete elimination of Notch signaling in intestine is lethal. Here we investigate whether residual Notch signaling enabled by EGF-domain-specific O-linked N-acetylglucosamine transferase (Eogt) permits mice conditionally lacking Pofut1 in intestine to survive. Mice globally lacking Eogt alone were grossly unaffected in intestinal development. In contrast, mice lacking both Eogt and Pofut1 died at ~ 28 days after birth with greater loss of body weight, a greater increase in the number of goblet and Paneth cells, and greater downregulation of the Notch target gene Hes1, compared to Pofut1 deletion alone. These data reveal that both O-fucose and O-GlcNAc glycans are fundamental to Notch signaling in the intestine and provide new insights into roles for O-glycans in regulating Notch ligand binding. Finally, EOGT and O-GlcNAc glycans provide residual Notch signaling and support viability in mice lacking Pofut1 in the intestine.
Collapse
Affiliation(s)
- Mohd Nauman
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
| | - Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
- Dudnyk, 5 Walnut Grove Drive, Suite 300, Horsham, PA, 19044, USA
| | - Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY, 10641, USA.
| |
Collapse
|
3
|
Tanwar A, Stanley P. Synergistic regulation of Notch signaling by different O-glycans promotes hematopoiesis. Front Immunol 2023; 14:1097332. [PMID: 37795096 PMCID: PMC10546201 DOI: 10.3389/fimmu.2023.1097332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Glycosylation of Notch receptors by O-fucose glycans regulates Notch ligand binding and Notch signaling during hematopoiesis. However, roles in hematopoiesis for other O-glycans that modify Notch receptors have not been determined. Here we show that the EGF domain specific GlcNAc transferase EOGT is required in mice for the optimal production of lymphoid and myeloid cells. The phenotype of Eogt null mice was largely cell-autonomous, and Notch target gene expression was reduced in T cell progenitors. Moreover, EOGT supported residual Notch signaling following conditional deletion of Pofut1 in hematopoietic stem cells (HSC). Eogt : Pofut1 double mutant HSC had more severe defects in bone marrow and in T and B cell development in thymus and spleen, compared to deletion of Pofut1 alone. The combined results show that EOGT and O-GlcNAc glycans are required for optimal hematopoiesis and T and B cell development, and that they act synergistically with POFUT1 and O-fucose glycans to promote Notch signaling in lymphoid and myeloid differentiation.
Collapse
Affiliation(s)
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Pradeep P, Kang H, Lee B. Glycosylation and behavioral symptoms in neurological disorders. Transl Psychiatry 2023; 13:154. [PMID: 37156804 PMCID: PMC10167254 DOI: 10.1038/s41398-023-02446-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Glycosylation, the addition of glycans or carbohydrates to proteins, lipids, or other glycans, is a complex post-translational modification that plays a crucial role in cellular function. It is estimated that at least half of all mammalian proteins undergo glycosylation, underscoring its importance in the functioning of cells. This is reflected in the fact that a significant portion of the human genome, around 2%, is devoted to encoding enzymes involved in glycosylation. Changes in glycosylation have been linked to various neurological disorders, including Alzheimer's disease, Parkinson's disease, autism spectrum disorder, and schizophrenia. Despite its widespread occurrence, the role of glycosylation in the central nervous system remains largely unknown, particularly with regard to its impact on behavioral abnormalities in brain diseases. This review focuses on examining the role of three types of glycosylation: N-glycosylation, O-glycosylation, and O-GlcNAcylation, in the manifestation of behavioral and neurological symptoms in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Prajitha Pradeep
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyeyeon Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Boyoung Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, South Korea.
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
5
|
Nieto-Benito LM, Suárez-Fernández R, Campos-Domínguez M. A novel pathogenic variation of DOCK6 gene: the genotype-phenotype correlation in Adams-Oliver syndrome. Mol Biol Rep 2023; 50:5519-5521. [PMID: 37133614 DOI: 10.1007/s11033-023-08430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Adams-Oliver syndrome (AOS) (#614,219) is a multiple malformation disorder characterized by the presence of aplasia cutis congenita (ACC) and transverse terminal limb defects (TTLD). METHODS AND RESULTS We describe a confirmed case of AOS with a novel pathogenic variation in Dedicator Of Cytokinesis 6 (DOCK6) gene, with neurological abnormalities, characterized by the presence of a multiple malformation entity with extensive cardiological and neurological abnormalities. CONCLUSIONS In AOS, genotype-phenotype correlations have been described. DOCK6 mutations appear to be related with congenital cardiac and central nervous system malformations associated with intellectual disability, as illustrated in the present case.
Collapse
Affiliation(s)
- Lula Maria Nieto-Benito
- Department of Dermatology and Venereology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, 46 Doctor Esquerdo St, 28007, Madrid, Spain.
| | - Ricardo Suárez-Fernández
- Department of Dermatology and Venereology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, 46 Doctor Esquerdo St, 28007, Madrid, Spain
| | - Minia Campos-Domínguez
- Department of Dermatology and Venereology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, 46 Doctor Esquerdo St, 28007, Madrid, Spain
- Laboratory of Immune-regulation, "Gregorio Marañón" Health Research Institute (IISGM), Madrid, Spain
- Medical School, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Lee HF, Chi CS. Congenital disorders of glycosylation and infantile epilepsy. Epilepsy Behav 2023; 142:109214. [PMID: 37086590 DOI: 10.1016/j.yebeh.2023.109214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare inherited metabolic disorders caused by defects in various defects of protein or lipid glycosylation pathways. The symptoms and signs of CDG usually develop in infancy. Epilepsy is commonly observed in CDG individuals and is often a presenting symptom. These epilepsies can present across the lifespan, share features of refractoriness to antiseizure medications, and are often associated with comorbid developmental delay, psychomotor regression, intellectual disability, and behavioral problems. In this review, we discuss CDG and infantile epilepsy, focusing on an overview of clinical manifestations and electroencephalographic features. Finally, we propose a tiered approach that will permit a clinician to systematically investigate and identify CDG earlier, and furthermore, to provide genetic counseling for the family.
Collapse
Affiliation(s)
- Hsiu-Fen Lee
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145, Xingda Rd., Taichung 402, Taiwan; Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, 1650, Taiwan Boulevard Sec. 4, Taichung 407, Taiwan.
| |
Collapse
|
7
|
Adams-Oliver syndrome and associated complications: Report of a family in Colombia and review of the literature. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:554-561. [PMID: 36511670 PMCID: PMC9773924 DOI: 10.7705/biomedica.6524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 12/14/2022]
Abstract
The Adams-Oliver syndrome is a rare congenital disorder characterized by aplasia cutis congenita of the scalp, terminal transverse limb defects, and congenital telangiectatic cutis marmorata. It can occur through different inheritance patterns: autosomal dominant, autosomal recessive, or de novo dominant mutations.
Although the Adams-Oliver syndrome is a rare disease, it is essential to know its clinical characteristics and inheritance patterns, to establish a correct diagnosis and its possible complications during follow-up.
In the present study, we describe the case of an adolescent with Adams-Oliver syndrome with an autosomal dominant inheritance pattern, pulmonary hypertension and plastic bronchitis, and several compromised family members.
Collapse
|
8
|
Stanley P, Tanwar A. Regulation of myeloid and lymphoid cell development by O-glycans on Notch. Front Mol Biosci 2022; 9:979724. [PMID: 36406268 PMCID: PMC9672378 DOI: 10.3389/fmolb.2022.979724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 10/06/2023] Open
Abstract
Notch signaling via NOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required for the development of T cells in thymus, and NOTCH2 stimulated by Notch ligand DLL1 is required for the development of marginal zone (MZ) B cells in spleen. Notch signaling also regulates myeloid cell production in bone marrow and is an essential contributor to the generation of early hematopoietic stem cells (HSC). The differentiation program in each of these cellular contexts is optimized by the regulation of Notch signaling strength by O-glycans attached to epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch receptors. There are three major types of O-glycan on NOTCH1 and NOTCH2 - O-fucose, O-glucose and O-GlcNAc. The initiating sugar of each O-glycan is added in the endoplasmic reticulum (ER) by glycosyltransferases POFUT1 (fucose), POGLUT1/2/3 (glucose) or EOGT (GlcNAc), respectively. Additional sugars are added in the Golgi compartment during passage through the secretory pathway to the plasma membrane. Of particular significance for Notch signaling is the addition of GlcNAc to O-fucose on an EGF repeat by the Fringe GlcNAc-transferases LFNG, MFNG or RFNG. Canonical Notch ligands (DLL1, DLL4, JAG1, JAG2) expressed in stromal cells bind to the extracellular domain of Notch receptors expressed in hematopoietic stem cells and myeloid and lymphoid progenitors to activate Notch signaling. Ligand-receptor binding is differentially regulated by the O-glycans on Notch. This review will summarize our understanding of the regulation of Notch signaling in myeloid and lymphoid cell development by specific O-glycans in mice with dysregulated expression of a particular glycosyltransferase and discuss how this may impact immune system development and malignancy in general, and in individuals with a congenital defect in the synthesis of the O-glycans attached to EGF repeats.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, NY, United States
| | | |
Collapse
|
9
|
Lukas M, Harald G, Sanz J, Trippel M, Sabina G, Jochen R. Cutaneous squamous cell carcinoma in an autosomal-recessive Adams-Oliver syndrome patient with a novel frameshift pathogenic variant in the EOGT gene. Am J Med Genet A 2022; 188:3318-3323. [PMID: 36059114 PMCID: PMC9826191 DOI: 10.1002/ajmg.a.62961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 01/31/2023]
Abstract
Aplasia cutis congenita (ACC) of the scalp and terminal transverse limb defects (TTLD) are the characteristic findings of Adams-Oliver syndrome (AOS). The variable clinical spectrum further includes cardiac, neurologic, renal, and ophthalmological findings. Associated genes in AOS are in the Notch and the CDC42/Rac1 signaling pathways. Both autosomal-dominant and autosomal-recessive inheritances have been reported, the latter with pathogenic variants in DOCK6 or EOGT. The EOGT-associated recessive type of AOS has been postulated to present a more favorable prognosis. We here report a 12-year-old girl from a refugee family of Iraq with consanguineous parents. She was born with a severe phenotype of AOS presenting a large ACC of the scalp with an underlying skull defect, which was often infected and inflamed. Afterward, additional ulceration developed. Furthermore, the girl showed microcephaly, TTLD on both hands and feet, and neurological findings: spastic paresis, epilepsy and suspicion of intellectual deficit. Molecular genetic analysis (next-generation sequencing) revealed a novel frameshift mutation in the EOGT gene in Exon 13 in homozygous constellation: c.1013dupA p.(Asn338Lysfs*24). A biopsy within an ulceration at the scalp ACC showed a cutaneous squamous cell carcinoma (cSCC) with local invasive growth into the dura, the meninges, and the cortex. Treatment including surgical resection and focal irradiation was not curative and the girl deceased 6 months after initial diagnosis. This report on a patient with AOS and an autosomal-recessive EOGT gene variant dying of a local aggressive cSCC at an ACC lesion shows that close monitoring of ACC is essential.
Collapse
Affiliation(s)
- Meyer‐Landolt Lukas
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| | - Gaspar Harald
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland,Present address:
Medical Genetics MainzMainzGermany
| | - Javier Sanz
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Gallati Sabina
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Rössler Jochen
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| |
Collapse
|
10
|
Brewitz L, Onisko BC, Schofield CJ. Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation. J Biol Chem 2022; 298:102129. [PMID: 35700824 PMCID: PMC9293771 DOI: 10.1016/j.jbc.2022.102129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Epidermal growth factor-like domains (EGFDs) have important functions in cell-cell signaling. Both secreted and cell surface human EGFDs are subject to extensive modifications, including aspartate and asparagine residue C3-hydroxylations catalyzed by the 2-oxoglutarate oxygenase aspartate/asparagine-β-hydroxylase (AspH). Although genetic studies show AspH is important in human biology, studies on its physiological roles have been limited by incomplete knowledge of its substrates. Here, we redefine the consensus sequence requirements for AspH-catalyzed EGFD hydroxylation based on combined analysis of proteomic mass spectrometric data and mass spectrometry-based assays with isolated AspH and peptide substrates. We provide cellular and biochemical evidence that the preferred site of EGFD hydroxylation is embedded within a disulfide-bridged macrocycle formed of 10 amino acid residues. This definition enabled the identification of previously unassigned hydroxylation sites in three EGFDs of human fibulins as AspH substrates. A non-EGFD containing protein, lymphocyte antigen-6/plasminogen activator urokinase receptor domain containing protein 6B (LYPD6B) was shown to be a substrate for isolated AspH, but we did not observe evidence for LYPD6B hydroxylation in cells. AspH-catalyzed hydroxylation of fibulins is of particular interest given their important roles in extracellular matrix dynamics. In conclusion, these results lead to a revision of the consensus substrate requirements for AspH and expand the range of observed and potential AspH-catalyzed hydroxylation in cells, which will enable future study of the biological roles of AspH.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| | | | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Lo PW, Okajima T. Eogt-catalyzed O-GlcNAcylation. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2033.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Institute for Glyco-core Research (iGCORE), Nagoya University
| |
Collapse
|
12
|
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
13
|
Yang C, Hu JF, Zhan Q, Wang ZW, Li G, Pan JJ, Huang L, Liao CY, Huang Y, Tian YF, Shen BY, Chen JZ, Wang YD, Chen S. SHCBP1 interacting with EOGT enhances O-GlcNAcylation of NOTCH1 and promotes the development of pancreatic cancer. Genomics 2021; 113:827-842. [PMID: 33515675 DOI: 10.1016/j.ygeno.2021.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/12/2020] [Accepted: 01/21/2021] [Indexed: 01/07/2023]
Abstract
O-GlcNAcylation is important in the development and progression of pancreatic ductal adenocarcinoma (PDAC). The glycosyltransferase EGF domain-specific O-linked GlcNAc transferase (EOGT) acts as a key participant in glycosylating NOTCH1. High-throughput sequencing of specimens from 30 advanced PDAC patients identified SHCBP1 and EOGT as factors of poor prognosis. We hypothesized that they could mediate PDAC progression by influencing NOTCH1 O-GlcNAcylation. Thus, 186 PDAC tissue specimens were immunostained for EOGT and SHCBP1. Pancreatic cancer cell lines and nude mouse models were used for in vitro and in vivo experiments. Respectively, The protein expression of EOGT and SHCBP1 was significantly elevated and correlated with worse prognosis in PDAC patients. In vitro, SHCBP1 overexpression promoted pancreatic cancer cell proliferation, migration and invasion, while knocking down SHCBP1 and EOGT inhibited these malignant processes. In vivo data showed that SHCBP1 overexpression promoted xenograft growth and lung metastasis and shortened survival in mice, whereas knocking down either EOGT or SHCBP1 expression suppressed xenograft growth and metastasis and prolonged survival. We further clarified the molecular mechanisms by which EOGT and SHCBP1 enhance the O-GlcNAcylation of NOTCH1, Subsequently promoting the nuclear localization of the Notch intracellular domain (NICD) and inhibiting the transcription of E-cadherin and P21 in pancreatic cancer cells.
Collapse
Affiliation(s)
- Can Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Ge Li
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Jing-Jing Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou 350001, PR China
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Bai-Yong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jiang-Zhi Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, PR China; Fujian Medical University Cancer Center, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, 350001, PR China.
| | - Yao-Dong Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China.
| |
Collapse
|
14
|
Matsumoto K, Luther KB, Haltiwanger RS. Diseases related to Notch glycosylation. Mol Aspects Med 2020; 79:100938. [PMID: 33341260 DOI: 10.1016/j.mam.2020.100938] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The Notch receptors are a family of transmembrane proteins that mediate direct cell-cell interactions and control numerous cell-fate specifications in humans. The extracellular domains of mammalian Notch proteins contain 29-36 tandem epidermal growth factor-like (EGF) repeats, most of which have O-linked glycan modifications: O-glucose added by POGLUT1, O-fucose added by POFUT1 and elongated by Fringe enzymes, and O-GlcNAc added by EOGT. The extracellular domain is also N-glycosylated. Mutations in the glycosyltransferases modifying Notch have been identified in several diseases, including Dowling-Degos Disease (haploinsufficiency of POFUT1 or POGLUT1), a form of limb-girdle muscular dystrophy (autosomal recessive mutations in POGLUT1), Spondylocostal Dysostosis 3 (autosomal recessive mutations in LFNG), Adams-Oliver syndrome (autosomal recessive mutations in EOGT), and some cancers (amplification, gain or loss-of-function of POFUT1, Fringe enzymes, POGLUT1, MGAT3). Here we review the characteristics of these diseases and potential molecular mechanisms.
Collapse
Affiliation(s)
- Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Kelvin B Luther
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
Jaeken J. Congenital disorders of glycosylation: A multi-genetic disease family with multiple subcellular locations. JOURNAL OF MOTHER AND CHILD 2020; 24:14-20. [PMID: 33554500 PMCID: PMC8518092 DOI: 10.34763/jmotherandchild.20202402si.2005.000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review discusses a selection of congenital disorders of glycosylation that show peculiar features, such as an unusual presentation, different phenotypes, a novel biochemical/genetic mechanism, a relatively high frequency or a relatively efficient treatment.
Collapse
Affiliation(s)
- Jaak Jaeken
- Department of Development and Regeneration, Center for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|