1
|
Xu H, Wang Z, Sa S, Yang Y, Zhang X, Li D. Identification of novel compound heterozygous variants of the ALMS1 gene in a child with Alström syndrome by whole genome sequencing. Gene 2024; 929:148827. [PMID: 39122231 DOI: 10.1016/j.gene.2024.148827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Alström syndrome (ALMS), a rare recessively inherited ciliopathy caused by mutations in ALMS1, is characterized by retinal dystrophy, childhood obesity, sensorineural hearing loss, and type 2 diabetes mellitus. The majority of pathogenic variants in ALMS1 are nonsense and frameshift mutations, which would lead to premature protein truncation, whereas copy number variants are seldom reported. METHODS Herein, we present a 10-year-old Chinese girl with ALMS. The potential causative genetic variant was confirmed through whole genome sequencing, quantitative real-time PCR analysis, and Sanger sequencing. Additionally, breakpoint analysis was performed to determine the exact breakpoint site of the large deletion and elucidate its probable formation mechanism. RESULTS The patient had a cor triatriatum sinister (CTS) structure. Genetic analysis identified novel compound heterozygous variants in the patient, consisting of a frameshift variant c.4414_4415delGT (p.V1472Nfs*26) in ALMS1 and a novel large deletion at chr2:73,612,355-73,626,339, which encompasses exon 1 of the ALMS1 gene. Moreover, breakpoint analysis revealed that the large deletion probably formed through the microhomology-mediated end joining (MMEJ) mechanism due to the 6-bp microhomologies (TCCTTC) observed at both ends of the breakpoints. CONCLUSIONS In this study, novel compound heterozygous variants in the ALMS1 gene were identified in an ALMS patient with a CTS structure. The molecular confirmation of these variants expands the mutational spectrum of ALMS1, while the manifestation of ALMS in the patient provides additional clinical insights into this syndrome.
Collapse
Affiliation(s)
- Haikun Xu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Ziju Wang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Sha Sa
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Ying Yang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China.
| | - Dejun Li
- Center for Reproductive Medicine and Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| |
Collapse
|
2
|
Bea-Mascato B, Valverde D. Genotype-phenotype associations in Alström syndrome: a systematic review and meta-analysis. J Med Genet 2023; 61:18-26. [PMID: 37321834 PMCID: PMC10803979 DOI: 10.1136/jmg-2023-109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Alström syndrome (ALMS; #203800) is an ultrarare monogenic recessive disease. This syndrome is associated with variants in the ALMS1 gene, which encodes a centrosome-associated protein involved in the regulation of several ciliary and extraciliary processes, such as centrosome cohesion, apoptosis, cell cycle control and receptor trafficking. The type of variant associated with ALMS is mostly complete loss-of-function variants (97%) and they are mainly located in exons 8, 10 and 16 of the gene. Other studies in the literature have tried to establish a genotype-phenotype correlation in this syndrome with limited success. The difficulty in recruiting a large cohort in rare diseases is the main barrier to conducting this type of study. METHODS In this study we collected all cases of ALMS published to date. We created a database of patients who had a genetic diagnosis and an individualised clinical history. Lastly, we attempted to establish a genotype-phenotype correlation using the truncation site of the patient's longest allele as a grouping criteria. RESULTS We collected a total of 357 patients, of whom 227 had complete clinical information, complete genetic diagnosis and meta-information on sex and age. We have seen that there are five variants with high frequency, with p.(Arg2722Ter) being the most common variant, with 28 alleles. No gender differences in disease progression were detected. Finally, truncating variants in exon 10 seem to be correlated with a higher prevalence of liver disorders in patients with ALMS. CONCLUSION Pathogenic variants in exon 10 of the ALMS1 gene were associated with a higher prevalence of liver disease. However, the location of the variant in the ALMS1 gene does not have a major impact on the phenotype developed by the patient.
Collapse
Affiliation(s)
- Brais Bea-Mascato
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Diana Valverde
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
3
|
Shi J, Xu K, Zhang X, Xie Y, Chang H, Li Y. A novel missense ALMS1 variant causes aberrant splicing identified in a cohort of patients with Alström syndrome. Front Genet 2023; 13:1104420. [PMID: 36685911 PMCID: PMC9845408 DOI: 10.3389/fgene.2022.1104420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose: Alström syndrome (AS) is a rare autosomal recessive disorder caused by variants of ALMS1. The objectives of this study were to describe the clinical and genetic characteristics of 19 Chinese patients with biallelic variants in ALMS1. Methods: We recruited 19 probands with biallelic disease-causing ALMS1 variants. All patients underwent ophthalmic and systematic evaluations and comprehensive molecular genetic analysis. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays were performed to observe the effect of a novel missense variant on ALMS1 pre-mRNA splicing. Results: We identified 33 causative variants in ALMS1, including 15 frameshift small indels, 14 non-sense variants, two gross deletions, one splicing variant, and one missense variant. RT-PCR showed that the missense variant c.9542G>A (p.R3181Q) altered pre-mRNA splicing to generate a truncated protein p. (Ser3082Asnfs*6). Retinal dystrophy (RD) was noted in all the patients, followed by metabolism disturbance (obesity or acanthosis nigricans) in 66.7% and hearing impairment in 61.1% of the patients. Patient systemic symptom numbers and their age at evaluation showed a significant positive correlation, and BCVA and age at the last examination showed a moderate correlation. All patients exhibited early-onset RD and severe visual impairment. The exception was one patient carrying homozygous p. R3181Q, who showed a mild visual defect and atypical retinal phenotype. Conclusion: Our findings expand the pathogenic variant spectrum of ALMS1 and provide the first verification of a novel missense variant caused AS by aberrant pre-mRNA splicing. Patients with AS might demonstrate varied clinical spectra; therefore, genetic analysis is vital for the early and accurate diagnosis of patients with atypical AS.
Collapse
|
4
|
Wang Y, Huang L, Sun L, Li S, Zhang Z, Zhang T, Lai Y, Ding X. Ocular findings and genetic test in Alström syndrome in childhood. Exp Eye Res 2022; 225:109277. [PMID: 36206858 DOI: 10.1016/j.exer.2022.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to investigate the mutation spectrums and ocular features of Alström syndrome (AS) patients. Six AS patients from five unrelated families were included. Ocular and systemic examinations were performed in all subjects. Whole-exome sequencing (WES) was performed in the probands, and Sanger sequencing was performed for mutation validation and segregation analysis. Among the six patients, the first symptoms included nystagmus, poor fixation, and photophobia. Five patients had high hyperopia, four of whom (80%) were initially diagnosed with amblyopia before referral with prescribed corrective lenses and amblyopia treatment, but no improvement was obtained. Optical coherence tomography (OCT) revealed progressive damage to the photoreceptor layer, including blurred ellipsoid zone (EZ) and lack of interdigitation zone (IZ) within the macula, and thorough loss of photoreceptor layer in the peripheral retina. Electroretinograms (ERG) demonstrated severely diminished cone and rod responses. WES identified biallelic variants of ALMS1 in all the six patients, including two novels, c.3892C > T (p.Gln1298*) and c.2888_2897del (p.Ser963Thrfs*15) and five knowns, c.10819C > T (p.Arg3607Trp), c.2090C > A (p.Ser697*), c.4891C > T (p.Gln1631*), c.10825C > T (p.Arg3069*) and c.6430C > T (Arg2146*). In conclusion, this study expanded the ocular features and genotypic spectrum of AS. High hyperopia is a significant and common feature of AS. OCT and ERG are essential accessory techniques for the diagnosis of AS. If a patient had high hyperopia with a noneffective response to amblyopic treatment, the diagnosis of AS should be suspected, and detailed ocular examination, systemic evaluation, and genetic testing recommended.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yanting Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Hearing Loss in Adults With Alström Syndrome-Experience From the UK National Alström Service. Otol Neurotol 2022; 43:e620-e627. [PMID: 35761454 DOI: 10.1097/mao.0000000000003553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To characterize the patterns of hearing loss and methods of hearing rehabilitation in the UK national cohort of adults with Alström syndrome. STUDY DESIGN Retrospective review of electronic patient records. SETTING UK National multi-disciplinary team (MDT) Alström service held at the Queen Elizabeth Hospital, Birmingham. PATIENTS Forty one adult patients with a diagnosis of Alström syndrome, confirmed via ALMS1 gene sequencing, are under ongoing review within the UK National MDT Alström service. MAIN OUTCOME MEASURES Magnitude and type of hearing loss were analyzed using patients' audiometric data. Deterioration of hearing was calculated using serial pure tone audiograms. Methods of hearing rehabilitation used by patients and potential candidacy for cochlear implantation were analyzed. RESULTS Of 34 patients with available audiograms, all had sensorineural hearing loss (SNHL). Dual sensory (visual and hearing) loss was present in 32/34 (94%) patients. Hearing deteriorated with advancing age, at 1.23 dB/yr. Severe- profound SNHL was present in 9/34 (26%) cases. Air conduction hearing aids were used in 27/34 (79%) cases, and cochlear implants in 2/34 (5%). CONCLUSIONS Alström syndrome is an ultra-rare genetic disorder with progressive, debilitating multi-system manifestations, including SNHL. The UK National MDT Alström service represents one of the largest reported adult cohorts in the world. SNHL in this group was ubiquitous, showing a rapid decline in hearing with age. Annual audiometric assessment to enable early diagnosis of hearing loss and optimum rehabilitation are paramount to minimize the impact of hearing loss in this condition.
Collapse
|
6
|
Kucher AN, Sleptcov AA, Nazarenko MS. Genetic Landscape of Dilated Cardiomyopathy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhang Q, Ding Y, Feng B, Tang Y, Chen Y, Wang Y, Chang G, Liu S, Wang J, Li Q, Fu L, Wang X. Molecular and Phenotypic Expansion of Alström Syndrome in Chinese Patients. Front Genet 2022; 13:808919. [PMID: 35211159 PMCID: PMC8861322 DOI: 10.3389/fgene.2022.808919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alström syndrome (ALMS) is a rare inherited metabolic disease and ciliopathy. Large cohorts of ALMS are lacking around the world. Detailed genetic and phenotypic data were obtained from all affected individuals. Olfactory function was evaluated by the Chinese Smell Identification Test and facial pattern was analyzed with Face2gene. Fifty ALMS patients were included in this study, aged from 0.3 to 21.7 years old. Sixty-one ALMS1 variants in 50 patients from 47 different families were confirmed, including 59 truncating and two exon deletions. Twenty-four of those variants were novel. We also summarized all previously reported cases of Chinese ALMS patients (69 patients) and identified specific and common variants within the Chinese population. Besides, the Chinese Smell Identification Test scores in patients was lower than that in controls (11.97 Vs. 10.44, p < .05), indicating olfactory identification impairments in ALMS patients. The facial pattern in ALMS patients was also distinctive from that of the controls (p < .05). In conclusion, this is the largest cohort of Chinese ALMS patients. We have successfully identified both specific and common variants in our cohort. We found a new phenotype of olfactory impairments in ALMS patients through a case-control study.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Biyun Feng
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Tang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Fu
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
9
|
Zhang JJ, Wang JQ, Sun MQ, Xu D, Xiao Y, Lu WL, Dong ZY. Alström syndrome with a novel mutation of ALMS1 and Graves’ hyperthyroidism: A case report and review of the literature. World J Clin Cases 2021; 9:3200-3211. [PMID: 33969109 PMCID: PMC8080750 DOI: 10.12998/wjcc.v9.i13.3200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alström syndrome (AS, OMIM ID 203800) is a rare disease involving multiple organs in children and is mostly reported in non-Chinese patients. In the Chinese population, there are few reports on the clinical manifestations and pathogenesis of AS. This is the first report on the association between AS and Graves’ hyperthyroidism.
CASE SUMMARY An 8-year-old Chinese girl was diagnosed with AS. Two years later, Graves’ hyperthyroidism developed with progressive liver dysfunction. The patient’s clinical data were collected; DNA from peripheral blood of the proband, parents and sibling was collected for gene mutation detection using the second-generation sequencing method and gene panel for diabetes. The association between the patient’s genotype and clinical phenotype was analyzed. She carried the pathogenic compound heterozygous mutation of ALMS1 (c.2296_2299del4 and c.11460C>A). These stop-gain mutations likely caused truncation of the ALMS1 protein.
CONCLUSION The manifestation of hyperthyroidism may suggest rapid progression of AS.
Collapse
Affiliation(s)
- Juan-Juan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Jun-Qi Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Man-Qing Sun
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - De Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Wen-Li Lu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| | - Zhi-Ya Dong
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Marwaha A, Chitayat D, Meyn MS, Mendoza-Londono R, Chad L. The point-of-care use of a facial phenotyping tool in the genetics clinic: Enhancing diagnosis and education with machine learning. Am J Med Genet A 2021; 185:1151-1158. [PMID: 33554457 DOI: 10.1002/ajmg.a.62092] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
Computer-assisted pattern recognition platforms, such as Face2Gene® (F2G), can facilitate the diagnosis of children with rare genetic syndromes by comparing a patient's features to known genetic diagnoses. Our work designed, implemented, and evaluated an innovative model of care in clinical genetics in a heterogeneous and multicultural patient population that utilized this facial phenotyping software at the point-of-care. We assessed the performance of F2G by comparing the suggested diagnoses to the patient's confirmed molecular diagnosis. Providers' overall experiences with the technology and trainees' educational experiences were assessed with questionnaires. We achieved an overall diagnostic yield of 57%. This increased to 82% when cases diagnosed with syndromes not recognized by F2G were removed. The mean rank of a confirmed diagnosis in the top 10 was 2.3 (CI 1.5-3.2) and the mean gestalt score 37.6%. The most commonly suggested diagnoses were Noonan syndrome, mucopolysaccharidosis, and 22q11.2 deletion syndrome. Our qualitative assessment revealed that clinicians and trainees saw value using the tool in practice. Overall, this work helped to implement an innovative patient care delivery model in clinical genetics that utilizes a facial phenotyping tool at the point-of-care. Our data suggest that F2G has utility in the genetics clinic as a clinical decision support tool in diverse populations, with a majority of patients having their eventual diagnosis listed in the top 10 suggested syndromes based on a photograph alone. It shows promise for further integration into clinical care and medical education, and we advocate for its continued use, adoption and refinement along with transparent and accountable industrial partnerships.
Collapse
Affiliation(s)
- Ashish Marwaha
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children University of Toronto, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - M Stephen Meyn
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children University of Toronto, Toronto, Ontario, Canada.,Center for Human Genomics and Precision Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children University of Toronto, Toronto, Ontario, Canada
| | - Lauren Chad
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children University of Toronto, Toronto, Ontario, Canada.,Department of Bioethics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Dassie F, Lorusso R, Benavides-Varela S, Milan G, Favaretto F, Callus E, Cagnin S, Reggiani F, Minervini G, Tosatto S, Vettor R, Semenza C, Maffei P. Neurocognitive assessment and DNA sequencing expand the phenotype and genotype spectrum of Alström syndrome. Am J Med Genet A 2021; 185:732-742. [PMID: 33410256 DOI: 10.1002/ajmg.a.62029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Alström syndrome (OMIM#203800) is an ultra-rare autosomal recessive monogenic disease presenting pathogenic variants in ALMS1 (chromosome 2p13). It is characterized by early onset of blindness, hearing loss and systemic comorbidities, with delayed development without cognitive impairment. We aimed to investigate the cognitive functions and describe new pathogenic variants in Alström syndrome patients. Nineteen patients (13 adults, 6 children) underwent a thorough clinical, genetic, laboratory, instrumental, and neurocognitive assessment. Six new pathogenic variants in ALMS1 including the first described in exon 6 were identified. Four patients displayed a "mild phenotype" characterized by slow disease onset or absence of complications, including childhood obesity and association with at least one pathogenic variant in exon 5 or 6. At neurocognitive testing, a significant proportion of patients had deficits in three neurocognitive domains: similarities, phonological memory, and apraxia. In particular, 53% of patients showed difficulties in the auditory working memory test. We found ideomotor and buccofacial apraxia in 74% of patients. "Mild phenotype" patients performed better on auditory working memory and ideomotor apraxia test than "typical phenotype" ones (91.9 + 16.3% vs. 41.7 + 34.5% of correct answers, Z = 64.5, p < .01 and 92.5 + 9.6 vs. 61.7 + 26.3, Z = 61, p < .05, respectively). Deficits in auditory working memory, ideomotor, and buccofacial apraxia were found in these patients and fewer neuropsychological deficits were found in the "mild" phenotype group. Furthermore, in the "mild" phenotype group, it was found that all pathogenic variants are localized before exon 8.
Collapse
Affiliation(s)
| | | | | | | | | | - Edward Callus
- Clinical Psychology Service, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Cagnin
- DiBio, Università di Padova, Padova, Italy.,CRIBI Biotechnology Center, Università di Padova, Padova, Italy
| | | | | | - Silvio Tosatto
- DSB, Università di Padova, Padova, Italy.,CNR Institute of Neuroscience, Padova, Italy
| | | | - Carlo Semenza
- DNS (PNC), Università di Padova, Padova, Italy.,IRCCS Ospedale S Camillo, Venezia, Italy
| | | |
Collapse
|
12
|
Saadah OI, Banaganapalli B, Kamal NM, Sahly AN, Alsufyani HA, Mohammed A, Ahmad A, Nasser KK, Al-Aama JY, Shaik NA, Elango R. Identification of a Rare Exon 19 Skipping Mutation in ALMS1 Gene in Alström Syndrome Patients From Two Unrelated Saudi Families. Front Pediatr 2021; 9:652011. [PMID: 33981653 PMCID: PMC8107379 DOI: 10.3389/fped.2021.652011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Alström syndrome (AS) is a very rare childhood disorder characterized by cardiomyopathy, progressive hearing loss and blindness. Inherited genetic variants of ALMS1 gene are the known molecular cause of this disease. The objective of this study was to characterize the genetic basis and understand the genotype-phenotype relationship in Saudi AS patients. Methods: Clinical phenotyping and whole-exome sequencing (WES) analysis were performed on six AS patients belonging to two unrelated consanguineous Saudi families. Sanger sequencing was performed to determine the mode of inheritance of ALMS1 variant in first-degree family relatives and also to ensure its rare prevalence in 100 healthy population controls. Results: We identified that Alström patients from both the families were sharing a very rare ALMS1, 3'-splice site acceptor (c.11873-2 A>T) variant, which skips entire exon-19 and shortens the protein by 80 amino acids. This disease variant was inherited by AS patients in autosomal recessive mode and is not yet reported in any population-specific genetic databases. AS patients carrying this mutation showed heterogeneity in clinical presentations. Computational analysis of the mutant centroid structure of ALMS1 mRNA revealed that exon-19 skipping enlarges the hairpin loop and decreases the free energy, eventually affecting its folding pattern, stability, and function. Hence, we propose c.11873-2A as an AS causative potential founder mutation in Saudi Arabia because it is found in two families lacking a common lineage. Conclusions: We conclude that WES analysis potentially helps in clinical phenotyping, early diagnosis, and better clinical management of Alström patients showing variable clinical expressivity.
Collapse
Affiliation(s)
- Omar I Saadah
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naglaa M Kamal
- Department of Pediatrics, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia.,Pediatric Hepatology Unit, Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed N Sahly
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Hadeel A Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Spinelli V, Girolami F, Marrone C, Consigli V, Iascone M, Passantino S, Porcedda G, Calabri GB, De Simone L, Olivotto I, Santoro G, Favilli S. A rare case of pediatric cardiomyopathy: Alström syndrome identified by gene panel analysis. Clin Case Rep 2020; 8:3369-3373. [PMID: 33363936 PMCID: PMC7752570 DOI: 10.1002/ccr3.3327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/09/2022] Open
Abstract
Genetic investigation of early-onset Dilatative cardiomyopathy phenotype, including molecular autopsy, is the key to appropriate recognition and management of rare etiologies and atypical presentations and to offer genetic counseling to the family.
Collapse
Affiliation(s)
| | | | - Chiara Marrone
- Department of CardiologyFondazione Toscana Gabriele MonasterioMassaItaly
| | - Veronica Consigli
- Department of CardiologyFondazione Toscana Gabriele MonasterioMassaItaly
| | - Maria Iascone
- Department of GeneticsASST Papa Giovanni XXIIIBergamoItaly
| | | | | | | | | | | | - Giuseppe Santoro
- Department of CardiologyFondazione Toscana Gabriele MonasterioMassaItaly
| | | |
Collapse
|