1
|
Miremberg H, Birnbaum R, Trigubov D, Botvinik A, Yaron Y, Mory A, Malinger G, Haratz KK. Prenatal Diagnosis of a KIDINS220 De Novo Heterozygous Variant in a Fetus With a Complex CNS Anomaly. Prenat Diagn 2024; 44:1518-1521. [PMID: 39367534 DOI: 10.1002/pd.6682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Following termination of pregnancy due to multiple brain malformations, a non-consanguineous couple of Jewish descent sought genetic counseling. Brain malformations identified on neurosonogram included corpus callosum dysgenesis, abnormal brain stem morphology, abnormal cortical sulcation and hypertelorism. Trio exome sequencing revealed a heterozygous de novo likely pathogenic variant in KIDINS220 gene. Heterozygous variants in KIDINS220 have been linked to spastic paraplegia, intellectual disability, nystagmus, and obesity syndrome (SINO). Reports on prenatal findings are limited and primarily consist of cases of ventriculomegaly. We describe a more severe clinical presentation in a case with a heterozygous variant.
Collapse
Affiliation(s)
- Hadas Miremberg
- Division of Obstetric Ultrasound, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roee Birnbaum
- Division of Obstetric Ultrasound, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorin Trigubov
- Genetics Institute and Genome Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Adi Botvinik
- Genetics Institute and Genome Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yuval Yaron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Genetics Institute and Genome Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Adi Mory
- Genetics Institute and Genome Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gustavo Malinger
- Division of Obstetric Ultrasound, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karina Krajden Haratz
- Division of Obstetric Ultrasound, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Alstrup M, Cesca F, Krawczun-Rygmaczewska A, López-Menéndez C, Pose-Utrilla J, Castberg FC, Bjerager MO, Finnila C, Kruer MC, Bakhtiari S, Padilla-Lopez S, Manwaring L, Keren B, Afenjar A, Galatolo D, Scalise R, Santorelli FM, Shillington A, Vezain M, Martinovic J, Stevens C, Gowda VK, Srinivasan VM, Thiffault I, Pastinen T, Baranano K, Lee A, Granadillo J, Glassford MR, Keegan CE, Matthews N, Saugier-Veber P, Iglesias T, Østergaard E. Refining the phenotype of SINO syndrome: A comprehensive cohort report of 14 novel cases. Genet Med 2024; 26:101219. [PMID: 39033379 DOI: 10.1016/j.gim.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
PURPOSE Spastic paraplegia, intellectual disability, nystagmus, and obesity syndrome (SINO) is a rare autosomal dominant condition caused by heterozygous variants in KIDINS220. A total of 12 individuals are reported, comprising 8 with SINO and 4 with an autosomal recessive condition attributed to biallelic KIDINS220 variants. METHODS In our international cohort, we have included 14 individuals, carrying 13 novel pathogenic KIDINS220 variants in heterozygous form. We assessed the clinical and molecular data of our cohort and previously reported individuals and, based on functional experiments, reached a better understanding of the pathogenesis behind the KIDINS220-related disease. RESULTS Using fetal tissue and in vitro assays, we demonstrate that the variants generate KIDINS220 truncated forms that mislocalize in punctate intracellular structures, with decreased levels of the full-length protein, suggesting a trans-dominant negative effect. A total of 92% had their diagnosis within 3 years, with symptoms of developmental delay, spasticity, hypotonia, lack of eye contact, and nystagmus. We identified a KIDINS220 variant associated with fetal hydrocephalus and show that 58% of examined individuals present brain ventricular dilatation. We extend the phenotypic spectrum of SINO syndrome to behavioral manifestations not previously highlighted. CONCLUSION Our study provides further insights into the clinical spectrum, etiology, and predicted functional impact of KIDINS220 variants.
Collapse
Affiliation(s)
- Morten Alstrup
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, Trieste, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy.
| | - Alicja Krawczun-Rygmaczewska
- Department of Life Sciences, University of Trieste, Trieste, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Celia López-Menéndez
- Instituto de Investigaciones Biomédicas Sols-Morreale. Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III. Madrid, Spain
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas Sols-Morreale. Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III. Madrid, Spain
| | - Filip Christian Castberg
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics, North Zealand Hospital, Hilleroed, Denmark
| | | | | | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ; Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Linda Manwaring
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Boris Keren
- Département de génétique, AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Afenjar
- APHP. Sorbonne Université, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, UF de génétique clinique, Hôpital Trousseau, Paris, France
| | - Daniele Galatolo
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Roberta Scalise
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Fillippo M Santorelli
- Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - Amelle Shillington
- Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Myriam Vezain
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, France
| | - Jelena Martinovic
- Department of Fetal Pathology, AP-HP Antoine Beclere Hospital, University Paris Saclay, Clamart, France
| | - Cathy Stevens
- Department of Pediatrics, University of Tennessee College of Medicine, Chattanooga, TN
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi institute of child health, Bangalore, India
| | | | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO; University of Missouri Kansas City School of Medicine, Kansas City, MO; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO; University of Missouri Kansas City School of Medicine, Kansas City, MO
| | - Kristin Baranano
- Johns Hopkins University, The Johns Hopkins Hospital, Baltimore, MD
| | - Angela Lee
- Department of Pediatrics, Division of Genetics and Genomics, Washington University, Saint Louis, MO
| | - Jorge Granadillo
- Department of Pediatrics, Division of Genetics and Genomics, Washington University, Saint Louis, MO
| | - Megan R Glassford
- Department of Pediatrics, Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI; Department of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Catherine E Keegan
- Department of Pediatrics, Division of Genetics, Metabolism, and Genomic Medicine, University of Michigan, Ann Arbor, MI
| | - Nicole Matthews
- WVU Medicine Children's Hospital, Division of Genetics, Morgantown, WV
| | - Pascale Saugier-Veber
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, Rouen, France; CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas Sols-Morreale. Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III. Madrid, Spain.
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Yang W, Wang S, Huo X, Yang K, Guo Z, Li Y, Ji X, Hao B, Liao S. Novel autosomal recessive SINO syndrome-associated KIDINS220 variants provide insight into the genotype-phenotype correlation. Heliyon 2024; 10:e37355. [PMID: 39296002 PMCID: PMC11408833 DOI: 10.1016/j.heliyon.2024.e37355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background KIDINS220 encodes a transmembrane scaffold protein, kinase D-interacting substrate of 220 kDa, that regulates neurotrophin signaling. Variants in KIDINS220 have been linked to spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO) syndrome or prenatal fatal cerebral ventriculomegaly and arthrogryposis (VENARG). This study aimed to investigate the genotype-phenotype correlation of pathogenic KIDINS220 variants. Methods We performed whole-exome sequencing on a patient with SINO syndrome and epilepsy. Identified pathogenic variants were confirmed using Sanger sequencing and evaluated with in silico tools. A comprehensive literature review was conducted to analyze the genetic and phenotypic data of both the newly diagnosed patient and previously reported cases with KIDINS220 variants. Results We identified novel compound heterozygous variants in KIDINS220, c.1556C > T (p.Thr519Met) and c.2374C > T (p.Arg792*), in the patient. Our analysis revealed that biallelic loss-of-function variants in KIDINS220 are associated with VENARG or autosomal recessive SINO (AR-SINO), whereas carboxy-terminal truncated variants that escape nonsense-mediated mRNA decay and lack amino acid residues 1507-1529 are linked to autosomal dominant SINO (AD-SINO). Patients with AR-SINO exhibit more severe clinical features compared to those with AD-SINO. Conclusions Our study expands the spectrum of KIDINS220 variants associated with AR-SINO and provides a valuable genotype-phenotype correlation for pathogenic KIDINS220 variants.
Collapse
Affiliation(s)
- Wenke Yang
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuyue Wang
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- Central Hospital of Wuhan, Wuhan, China
| | - Xiaodong Huo
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Yang
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenglong Guo
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
| | - Yanjun Li
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Bingtao Hao
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
| | - Shixiu Liao
- Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Zhengzhou, China
| |
Collapse
|
4
|
Bonati MT, Baldoli C, Taurino J, Marchetti D, Larizza L, Finelli P, Iascone M. A Novel KIDINS220 Pathogenic Variant Associated with the Syndromic Spastic Paraplegia SINO: An Expansion of the Brain Malformation Spectrum and a Literature Review. Genes (Basel) 2024; 15:1190. [PMID: 39336781 PMCID: PMC11431642 DOI: 10.3390/genes15091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Identifying novel variants in very rare disease genes can be challenging when patients exhibit a complex phenotype that expands the one described, and we provide such an example here. A few terminal truncating variants in KIDINS220 cause spastic paraplegia (SP), intellectual disability (ID), nystagmus, and obesity (SINO, MIM #617296). Prompted by the result of next-generation sequencing on a patient referred for SP associated with complex brain dysmorphisms, we reviewed the phenotype of SINO patients focusing on their brain malformations, mainly described in prenatal age and first years of life, and tried to understand if the predicted effect of the mutant kidins220 may have caused them. METHODS We performed whole exome sequencing (WES) and a literature and mutation databases review. RESULTS We report a young adult with SP, severe ID, strabismus, and macrocephaly exhibiting brain malformations at follow-up, partially overlapping with those described in TUBB3 tubulinopathy. WES analysis of the proband and parents identified the heterozygous de novo variant (NM_020738.4: c. 4144G > T) p. Glu 1382* in KIDINS220 that was predicted to be causative of SINO. CONCLUSIONS The progression of myelination and the development of brain structures turned out to be crucial for identifying, at follow-up, the whole KIDINS220-related brain malformations. The truncated proteins associated with SINO lack a portion fundamental for the interaction of kidins220 with tubulins and microtubule-associated proteins. The complexity of the brain malformations displayed by our patient, and possibly by other reported SINO patients, could result from an impaired dynamic modulation of the microtubule cytoskeleton during embryogenesis. Brain malformations must be considered as part of the SINO spectrum phenotype.
Collapse
Affiliation(s)
- Maria Teresa Bonati
- Institute for Maternal and Child Health “Burlo Garofolo”, 34137 Trieste, TS, Italy
| | - Cristina Baldoli
- Department of Neuroradiology, San Raffaele Scientific Institute, 20132 Milan, MI, Italy;
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 San Donato Milanese, MI, Italy;
| | - Daniela Marchetti
- Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, BG, Italy; (D.M.); (M.I.)
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20095 Cusano Milanino, MI, Italy;
| | - Palma Finelli
- SC Patologia Clinica, SS Laboratorio Genetica Medica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, MI, Italy;
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, MI, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, BG, Italy; (D.M.); (M.I.)
| |
Collapse
|
5
|
Zhang J, Zhang Y, Shang Q, Cheng Y, Su Y, Zhang J, Wang T, Ding J, Li Y, Xie Y, Xing Q. Gain-of-Function KIDINS220 Variants Disrupt Neuronal Development and Cause Cerebral Palsy. Mov Disord 2024; 39:498-509. [PMID: 38148610 DOI: 10.1002/mds.29694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Kinase D-interacting substrate of 220 kDa (KIDINS220) is a multifunctional scaffolding protein essential for neuronal development. It has been implicated in neurological diseases with either autosomal dominant (AD) or autosomal recessive (AR) inheritance patterns. The molecular mechanisms underlying the AR/AD dual nature of KIDINS220 remain elusive, posing challenges to genetic interpretation and clinical interventions. Moreover, increased KIDINS220 exhibited neurotoxicity, but its role in neurodevelopment remains unclear. OBJECTIVE The aim was to investigate the genotype-phenotype correlations of KIDINS220 and elucidate its pathophysiological role in neuronal development. METHODS Whole-exome sequencing was performed in a four-generation family with cerebral palsy. CRISPR/Cas9 was used to generate KIDINS220 mutant cell lines. In utero electroporation was employed to investigate the effect of KIDINS220 variants on neurogenesis in vivo. RESULTS We identified in KIDINS220 a pathogenic nonsense variant (c.4177C > T, p.Q1393*) that associated with AD cerebral palsy. We demonstrated that the nonsense variants located in the terminal exon of KIDINS220 are gain-of-function (GoF) variants, which enable the mRNA to escape nonsense-mediated decay and produce a truncated yet functional KIDINS220 protein. The truncated protein exhibited significant resistance to calpain and consequently accumulated within cells, resulting in the hyperactivation of Rac1 and defects in neuronal development. CONCLUSIONS Our findings demonstrate that the location of variants within KIDINS220 plays a crucial role in determining inheritance patterns and corresponding clinical outcomes. The proposed interaction between Rac1 and KIDINS220 provides new insights into the pathogenesis of cerebral palsy, implying potential therapeutic perspectives. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jin Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yandong Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qing Shang
- Department of Pediatric Rehabilitation Medicine, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Ye Cheng
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yu Su
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Junjie Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Ting Wang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Jian Ding
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yunqian Li
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qinghe Xing
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Albini M, Almacellas-Barbanoj A, Krawczun-Rygmaczewska A, Ciano L, Benfenati F, Michetti C, Cesca F. Alterations in KIDINS220/ARMS Expression Impact Sensory Processing and Social Behavior in Adult Mice. Int J Mol Sci 2024; 25:2334. [PMID: 38397009 PMCID: PMC10889203 DOI: 10.3390/ijms25042334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Kinase D-interacting substrate of 220 kDa (Kidins220) is a transmembrane protein that participates in neural cell survival, maturation, and plasticity. Mutations in the human KIDINS220 gene are associated with a neurodevelopmental disorder ('SINO' syndrome) characterized by spastic paraplegia, intellectual disability, and in some cases, autism spectrum disorder. To better understand the pathophysiology of KIDINS220-linked pathologies, in this study, we assessed the sensory processing and social behavior of transgenic mouse lines with reduced Kidins220 expression: the CaMKII-driven conditional knockout (cKO) line, lacking Kidins220 in adult forebrain excitatory neurons, and the Kidins220floxed line, expressing constitutively lower protein levels. We show that alterations in Kidins220 expression levels and its splicing pattern cause impaired response to both auditory and olfactory stimuli. Both transgenic lines show impaired startle response to high intensity sounds, with preserved pre-pulsed inhibition, and strongly reduced social odor recognition. In the Kidins220floxed line, olfactory alterations are associated with deficits in social memory and increased aggressive behavior. Our results broaden our knowledge of the SINO syndrome; understanding sensory information processing and its deviations under neuropathological conditions is crucial for devising future therapeutic strategies to enhance the quality of life of affected individuals.
Collapse
Affiliation(s)
- Martina Albini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Amanda Almacellas-Barbanoj
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Lorenzo Ciano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; (M.A.); (A.A.-B.); (A.K.-R.); (L.C.); (F.B.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
7
|
Zhang F, Chen J, Li Y, Ye J, Wang C. Neuronal Scaffold Protein ARMS Interacts with Synaptotagmin-4 C2AB through the Ankyrin Repeat Domain with an Unexpected Mode. Int J Mol Sci 2023; 24:16993. [PMID: 38069318 PMCID: PMC10707181 DOI: 10.3390/ijms242316993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The ankyrin repeat-rich membrane spanning (ARMS), a transmembrane neuronal scaffold protein, plays a fundamental role in neuronal physiology, including neuronal development, polarity, differentiation, survival and angiogenesis, through interactions with diverse partners. Previous studies have shown that the ARMS negatively regulates brain-derived neurotrophic factor (BDNF) secretion by interacting with Synaptotagmin-4 (Syt4), thereby affecting neurogenesis and the development and function of the nervous system. However, the molecular mechanisms of the ARMS/Syt4 complex assembly remain unclear. Here, we confirmed that the ARMS directly interacts with Syt4 through its N-terminal ankyrin repeats 1-8. Unexpectedly, both the C2A and C2B domains of Syt4 are necessary for binding with the ARMS. We then combined the predicted complex structural models from AlphaFold2 with systematic biochemical analyses using point mutagenesis to underline the molecular basis of ARMS/Syt4 complex formation and to identify two conserved residues, E15 and W72, of the ARMS, as essential residues mediating the assembly of the complex. Furthermore, we showed that ARMS proteins are unable to interact with Syt1 or Syt3, indicating that the interaction between ARMS and Syt4 is specific. Taken together, the findings from this study provide biochemical details on the interaction between the ARMS and Syt4, thereby offering a biochemical basis for the further understanding of the potential mechanisms and functional implications of the ARMS/Syt4 complex formation, especially with regard to the modulation of BDNF secretion and associated neuropathies.
Collapse
Affiliation(s)
- Fa Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiasheng Chen
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yahong Li
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jin Ye
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
8
|
Jaago M, Rähni A, Pupina N, Pihlak A, Sadam H, Tuvikene J, Avarlaid A, Planken A, Planken M, Haring L, Vasar E, Baćević M, Lambert F, Kalso E, Pussinen P, Tienari PJ, Vaheri A, Lindholm D, Timmusk T, Ghaemmaghami AM, Palm K. Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naïve individuals. Sci Rep 2022; 12:16817. [PMID: 36207326 PMCID: PMC9540097 DOI: 10.1038/s41598-022-20849-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Immunity to previously encountered viruses can alter response to unrelated pathogens. We reasoned that similar mechanism may also involve SARS-CoV-2 and thereby affect the specificity and the quality of the immune response against the virus. Here, we employed high-throughput next generation phage display method to explore the link between antibody immune response to previously encountered antigens and spike (S) glycoprotein. By profiling the antibody response in COVID-19 naïve individuals with a diverse clinical history (including cardiovascular, neurological, or oncological diseases), we identified 15 highly antigenic epitopes on spike protein that showed cross-reactivity with antigens of seasonal, persistent, latent or chronic infections from common human viruses. We observed varying degrees of cross-reactivity of different viral antigens with S in an epitope-specific manner. The data show that pre-existing SARS-CoV-2 S1 and S2 cross-reactive serum antibody is readily detectable in pre-pandemic cohort. In the severe COVID-19 cases, we found differential antibody response to the 15 defined antigenic and cross-reactive epitopes on spike. We also noted that despite the high mutation rates of Omicron (B.1.1.529) variants of SARS-CoV-2, some of the epitopes overlapped with the described mutations. Finally, we propose that the resolved epitopes on spike if targeted by re-called antibody response from SARS-CoV-2 infections or vaccinations can function in chronically ill COVID-19 naïve/unvaccinated individuals as immunogenic targets to boost antibodies augmenting the chronic conditions. Understanding the relationships between prior antigen exposure at the antibody epitope level and the immune response to subsequent infections with viruses from a different strain is paramount to guiding strategies to exit the COVID-19 pandemic.
Collapse
Affiliation(s)
- Mariliis Jaago
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annika Rähni
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | - Helle Sadam
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- DXLabs LLC, Tallinn, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anu Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Margus Planken
- North Estonia Medical Centre Foundation, Tallinn, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, Psychiatry Clinic of Tartu University Hospital, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Miljana Baćević
- Dental Biomaterial Research Unit (d-BRU), Faculty of Medicine, University of Liege, Liege, Belgium
| | - France Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liege, Liege, Belgium
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, Helsinki, Finland
- SleepWell Research Programme, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Pentti J Tienari
- Translational Immunology Research Program, Department of Neurology, Neurocenter, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tõnis Timmusk
- Protobios LLC, Tallinn, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Amir M Ghaemmaghami
- Immunology and Immuno-Bioengineering Group, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
9
|
Almacellas-Barbanoj A, Albini M, Satapathy A, Jaudon F, Michetti C, Krawczun-Rygmaczewska A, Huang H, Manago F, Papaleo F, Benfenati F, Cesca F. Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Dis 2022; 8:58. [PMID: 35140204 PMCID: PMC8828717 DOI: 10.1038/s41420-022-00854-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Kinase D interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a transmembrane scaffold protein that participates in fundamental aspects of neuronal physiology including cell survival, differentiation, and synaptic plasticity. The Kidins220 constitutive knockout line displays developmental defects in the nervous and cardiovascular systems that lead to embryonic lethality, which has so far precluded the study of this protein in the adult. Moreover, Kidins220 mRNA is tightly regulated by alternative splicing, whose impact on nervous system physiology has not yet been addressed in vivo. Here, we have asked to what extent the absence of Kidins220 splicing and the selective knockout of Kidins220 impact on adult brain homeostasis. To answer this question, we used a floxed line that expresses only the full-length, non-spliced Kidins220 mRNA, and a forebrain-specific, CaMKII-Cre driven Kidins220 conditional knockout (cKO) line. Kidins220 cKO brains are characterized by enlarged ventricles in the absence of cell death, and by deficient dendritic arborization in several cortical regions. The deletion of Kidins220 leads to behavioral changes, such as reduced anxiety-like traits linked to alterations in TrkB-BDNF signaling and sex-dependent alterations of hippocampal-dependent spatial memory. Kidins220 floxed mice present similarly enlarged brain ventricles and increased associative memory. Thus, both the absolute levels of Kidins220 expression and its splicing pattern are required for the correct brain development and related expression of behavioral phenotypes. These findings are relevant in light of the increasing evidence linking mutations in the human KIDINS220 gene to the onset of severe neurodevelopmental disorders.
Collapse
Affiliation(s)
- Amanda Almacellas-Barbanoj
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Albini
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Annyesha Satapathy
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy
| | - Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Caterina Michetti
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Experimental Medicine, University of Genova, 16132, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Huiping Huang
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Francesca Manago
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Fondazione Istituto Italiano di Tecnologia, 16132, Genova, Italy. .,Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
10
|
Jaudon F, Albini M, Ferroni S, Benfenati F, Cesca F. A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor. J Cell Sci 2021; 134:jcs258419. [PMID: 34279618 DOI: 10.1242/jcs.258419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
Astroglial cells are key to maintain nervous system homeostasis. Neurotrophins are known for their pleiotropic effects on neuronal physiology but also exert complex functions to glial cells. Here, we investigated (i) the signaling competence of mouse embryonic and postnatal primary cortical astrocytes exposed to brain-derived neurotrophic factor (BDNF) and, (ii) the role of kinase D-interacting substrate of 220 kDa (Kidins220), a transmembrane scaffold protein that mediates neurotrophin signaling in neurons. We found a shift from a kinase-based response in embryonic cells to a response predominantly relying on intracellular Ca2+ transients [Ca2+]i within postnatal cultures, associated with a decrease in the synthesis of full-length BDNF receptor TrkB, with Kidins220 contributing to the BDNF-activated kinase and [Ca2+]i pathways. Finally, Kidins220 participates in the homeostatic function of astrocytes by controlling the expression of the ATP-sensitive inward rectifier potassium channel 10 (Kir4.1) and the metabolic balance of embryonic astrocytes. Overall, our data contribute to the understanding of the complex role played by astrocytes within the central nervous system, and identify Kidins220 as a novel actor in the increasing number of pathologies characterized by astrocytic dysfunctions. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Martina Albini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|