1
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Shan Y, Yao L, Li L, Gao X, Jiang J. A novel CHD7 variant in a chinese family with CHARGE syndrome. Genes Genomics 2024; 46:379-387. [PMID: 37273125 DOI: 10.1007/s13258-023-01411-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE CHARGE syndrome is a rare autosomal dominant (AD) multi-system disorder with a broad and variable clinical manifestation and occurs in approximately 1/10,000 newborns in the world. Mutations in the CHD7 gene are the genetic cause of over 90% of patients with typical CHARGE syndrome. The present study reported a novel variant in the CHD7 gene in a Chinese family with an abnormal fetus. METHODS Routine prenatal ultrasound screening showed fetal heart abnormality and left foot varus. Chromosomal microarray analysis (CMA) and fetus-parent whole-exome sequencing (trio-WES) were performed to determine the genetic cause of the fetus. The candidate variant was further verified using Sanger sequencing. RESULTS CMA analysis revealed normal results. However, WES analysis identified a de novo heterozygous variant of c.2919_2922del (NM_017780.4) on exon 11 of CHD7 gene, resulting in a premature truncation of the CHD7 protein (p.Gly975*). The variant was classified as Pathogenic (PVS1 + PS2_Moderate + PM2_Supporting) based on the ACMG guidelines. Combined with the clinical phenotype of fetal heart abnormalities, it was confirmed CHARGE syndrome. CONCLUSION We identified a novel heterozygous variant c.2919_2922del in CHD7 of a Chinese fetus with CHARGE syndrome, enriching the genotype-phenotype spectrum of CHD7. These results suggest that genetic testing could help facilitate prenatal diagnosis of CHARGE syndrome, thus promoting the appropriate genetic counseling.
Collapse
Affiliation(s)
- Yanhong Shan
- Department of Obstetrics, the First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - LingFang Yao
- Department of Obstetrics, Huangshi love and health hospital, Huangshi, Hubei, 435002, China.
| | - Linli Li
- Department of Obstetrics, the First Hospital of Jilin University, Changchun, Jilin, 130061, China
| | - Xueping Gao
- Yinfeng Gene Technology Co., Ltd, Jinan, Shandong, 250000, China
| | - Jinghan Jiang
- Yinfeng Gene Technology Co., Ltd, Jinan, Shandong, 250000, China
| |
Collapse
|
3
|
Wang T, Ren W, Fu F, Wang H, Li Y, Duan J. Digenic CHD7 and SMCHD1 inheritance Unveils phenotypic variability in a family mainly presenting with hypogonadotropic hypogonadism. Heliyon 2024; 10:e23272. [PMID: 38148819 PMCID: PMC10750161 DOI: 10.1016/j.heliyon.2023.e23272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Objectives CHARGE syndrome is a congenital hereditary condition involving multiple systems. Patients are easily misdiagnosed with idiopathic hypogonadotropic hypogonadism (IHH) due to the overlap of clinical manifestations. An accurate clinical diagnosis remains challenging when the predominant clinical manifestation resembles hypogonadotropic hypogonadism. Methods This original research is conducted based on the genetic finding and analysis of clinical cases. Whole-exome sequencing (WES) and in-silico analyse were performed on two sisters to investigate the pathogenesis in this family. Homology modelling was conducted to evaluate structural changes in the variants. Results WES and Sanger sequencing revealed two siblings carrying a nonsense mutation (NM_017780.4: c.115C > T) in exon 2 of CHD7 inherited from a mildly affected mother and a missense mutation (NM_015295.3: c.2582T > C) in exon 20 of SMCHD1 inherited from an asymptomatic father. The nonsense mutation in CHD7 was predicted to generate nonsense-mediated decay, whereas the missense mutation in SMCHD1 decreased protein stability. Conclusions We identified digenic CHD7 and SMCHD1 mutations in IHH-associated diseases for the first time and verified the synergistic role of oligogenic inheritance. It was also determined that WES is an effective tool for distinguishing diseases with overlapping features and establishing a molecular diagnosis for cases with digenic or oligogenic hereditary disorders, which is beneficial for timely treatment, and family genetic counseling.
Collapse
Affiliation(s)
- Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu Ren
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hairong Wang
- Wuhan KDWS Biological Technology Co.,Ltd, Wuhan, 430000, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Duan
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| |
Collapse
|
4
|
van der Laan L, Rooney K, Haghshenas S, Silva A, McConkey H, Relator R, Levy MA, Valenzuela I, Trujillano L, Lasa-Aranzasti A, Campos B, Castells N, Verberne EA, Maas S, Alders M, Mannens MMAM, van Haelst MM, Sadikovic B, Henneman P. Functional Insight into and Refinement of the Genomic Boundaries of the JARID2-Neurodevelopmental Disorder Episignature. Int J Mol Sci 2023; 24:14240. [PMID: 37762546 PMCID: PMC10531903 DOI: 10.3390/ijms241814240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
JARID2 (Jumonji, AT-rich interactive domain 2) haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. It is characterized by intellectual disability, developmental delay, autistic features, behavior abnormalities, cognitive impairment, hypotonia, and dysmorphic features. JARID2 acts as a transcriptional repressor protein that is involved in the regulation of histone methyltransferase complexes. JARID2 plays a role in the epigenetic machinery, and the associated syndrome has an identified DNA methylation episignature derived from sequence variants and intragenic deletions involving JARID2. For this study, our aim was to determine whether patients with larger deletions spanning beyond JARID2 present a similar DNA methylation episignature and to define the critical region involved in aberrant DNA methylation in 6p22-p24 microdeletions. We examined the DNA methylation profiles of peripheral blood from 56 control subjects, 13 patients with (likely) pathogenic JARID2 variants or patients carrying copy number variants, and three patients with JARID2 VUS variants. The analysis showed a distinct and strong differentiation between patients with (likely) pathogenic variants, both sequence and copy number, and controls. Using the identified episignature, we developed a binary model to classify patients with the JARID2-neurodevelopmental syndrome. DNA methylation analysis indicated that JARID2 is the driver gene for aberrant DNA methylation observed in 6p22-p24 microdeletions. In addition, we performed analysis of functional correlation of the JARID2 genome-wide methylation profile with the DNA methylation profiles of 56 additional neurodevelopmental disorders. To conclude, we refined the critical region for the presence of the JARID2 episignature in 6p22-p24 microdeletions and provide insight into the functional changes in the epigenome observed when regulation by JARID2 is lost.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Ananília Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Michael A. Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
| | - Irene Valenzuela
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Laura Trujillano
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Berta Campos
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Neus Castells
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 129, 08035 Barcelona, Spain
| | - Eline A. Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Saskia Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mieke M. van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada (R.R.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Polito MV, Ferraioli M, Nocilla A, Coppola G, D'Auria F, Marzano A, Barnabei L, Malinconico M, Bossone E, Ferrara F. CHARGE syndrome and congenital heart diseases: systematic review of literature. Monaldi Arch Chest Dis 2023. [PMID: 37675914 DOI: 10.4081/monaldi.2023.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
CHARGE syndrome (CS) is a rare genetic disease that affects many areas of the body. The aim of the present systematic review was to evaluate the prevalence and types of congenital heart diseases (CHDs) in CS and their impact on clinical outcome. A systematic review from 1981 to September 2022 was conducted. Clinical studies that reported the association between CS and CHDs were identified, including a case report of a rare congenital anomaly of the aortic arch (AA) with persistent fifth aortic arch (PFAA). Demographic, clinical and outcome data were extracted and analyzed. Sixty-eight studies (44 case reports and 24 case series; n=943 CS patients) were included. The prevalence of CHDs was 76.6%, patent ductus arteriosus (PDA) 26%, ventricular (VSD) 21%, atrial septal defects (ASD) 18%, tetralogy of Fallot 11%, aortic abnormalities 24%. PFAA has not been previously reported in CS. Cardiac surgery was performed in more than half of CS patients (150/242, 62%). In-hospital mortality rate was about 9.5% (n=86/900) in case series studies and 12% (n=5/43) in case reports, including cardiovascular (CV) and non-CV causes. CHDs and feeding disorders associated with CS may have a substantial impact on prognosis. CHDs were usually associated with CS and represent important causes of morbidity and mortality. PFAA, although rare, may also be present. The prognosis is highly dependent on the presence of cardiac and non-cardiac developmental abnormalities. Further studies are needed to better identify the main causes of the long-term outcome of CS patients.
Collapse
Affiliation(s)
- Maria Vincenza Polito
- Division of Cardiology, "Cava de' Tirreni and Amalfi Coast" Hospital, Heart Department, University Hospital of Salerno.
| | - Mario Ferraioli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA).
| | - Alessandra Nocilla
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA).
| | - Guido Coppola
- Division of Cardiology, "Cava de' Tirreni and Amalfi Coast" Hospital, Heart Department, University Hospital of Salerno.
| | - Federica D'Auria
- Division of Cardiology, "Cava de' Tirreni and Amalfi Coast" Hospital, Heart Department, University Hospital of Salerno.
| | - Antonio Marzano
- Division of Cardiology, "Cava de' Tirreni and Amalfi Coast" Hospital, Heart Department, University Hospital of Salerno.
| | - Luca Barnabei
- Division of Cardiology, "Cava de' Tirreni and Amalfi Coast" Hospital, Heart Department, University Hospital of Salerno.
| | - Marisa Malinconico
- Division of Cardiology, "Cava de' Tirreni and Amalfi Coast" Hospital, Heart Department, University Hospital of Salerno.
| | - Eduardo Bossone
- Department of Public Health, Federico II University of Naples.
| | - Francesco Ferrara
- Division of Cardiology, "Cava de' Tirreni and Amalfi Coast" Hospital, Heart Department, University Hospital of Salerno.
| |
Collapse
|
6
|
Boschann F, Kosmehl S, Bloching M, Grünhagen J, Hildebrand G, Horn D, Lyutenski S. Novel noncanonical splice site variant causes mild CHD7-related disorder with variable intrafamilial expressivity. Am J Med Genet A 2023; 191:1128-1132. [PMID: 36708132 DOI: 10.1002/ajmg.a.63122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
The clinical diagnosis criteria for CHARGE syndrome have been revised several times in the last 25 years. Variable expressivity and reduced penetrance are known, particularly in mild and familial cases. Therefore, it has been proposed to include the detection of a pathogenic CHD7 variant as a major diagnostic criterion. However, intronic variants not located at the canonical splice site are still underrepresented in mutation databases, often because functional analysis is not performed in the diagnostic setting. Here, we report a two-generation family that did not meet the criteria for CHARGE syndrome, until the molecular findings were taken into account. By exome sequencing, we detected an intronic variant in a male individual, who presented with unilateral external ear malformation, bilateral semicircular canal aplasia, polydactyly, vertebral body fusion and a heart defect. The variant was inherited by his mother, who also had bilateral semicircular canal aplasia additionally to unilateral sensorineural hearing impairment, unilateral mandibular palpebral synkinesia, orofacial cleft, and dysphagia. Using RNA studies, we were able to demonstrate that aberrant splicing occurs at an upstream cryptic splice acceptor site, resulting in a frameshift and premature stop of translation. Our data show causality of the noncanonical intronic CHD7 variant and end the diagnostic odyssey of this unsolved phenotype of the family.
Collapse
Affiliation(s)
- Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Sabine Kosmehl
- Department of Otorhinolaryngology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Marc Bloching
- Department of Otorhinolaryngology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Johannes Grünhagen
- Labor Berlin Charité Vivantes GmbH-Corporate Member of Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Hildebrand
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denise Horn
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Lyutenski
- Department of Otorhinolaryngology, Helios Hospital Berlin-Buch, Berlin, Germany
| |
Collapse
|
7
|
Petrin AL, Zeng E, Thomas MA, Moretti-Ferreira D, Marazita ML, Xie XJ, Murray JC, Moreno-Uribe LM. DNA methylation differences in monozygotic twins with Van der Woude syndrome. FRONTIERS IN DENTAL MEDICINE 2023; 4:1120948. [PMID: 36936396 PMCID: PMC10019782 DOI: 10.3389/fdmed.2023.1120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction Van der Woude Syndrome (VWS) is an autosomal dominant disorder responsible for 2% of all syndromic orofacial clefts (OFCs) with IRF6 being the primary causal gene (70%). Cases may present with lip pits and either cleft lip, cleft lip with cleft palate, or cleft palate, with marked phenotypic discordance even among individuals carrying the same mutation. This suggests that genetic or epigenetic modifiers may play additional roles in the syndrome's etiology and variability in expression. We report the first DNA methylation profiling of 2 pairs of monozygotic twins with VWS. Our goal is to explore epigenetic contributions to VWS etiology and variable phenotypic expressivity by comparing DNAm profiles in both twin pairs. While the mutations that cause VWS in these twins are known, the additional mechanism behind their phenotypic risk and variability in expression remains unclear. Methods We generated whole genome DNAm data for both twin pairs. Differentially methylated positions (DMPs) were selected based on: (1) a coefficient of variation in DNAm levels in unaffected individuals < 20%, and (2) intra-twin pair absolute difference in DNAm levels >5% (delta beta > | 0.05|). We then divided the DMPs in two subgroups for each twin pair for further analysis: (1) higher methylation levels in twin A (Twin A > Twin B); and (2) higher methylation levels in twin B (Twin B >Twin A). Results and Discussion Gene ontology analysis revealed a list of enriched genes that showed significant differential DNAm, including clef-associated genes. Among the cleft-associated genes, TP63 was the most significant hit (p=7.82E-12). Both twin pairs presented differential DNAm levels in CpG sites in/near TP63 (Twin 1A > Twin 1B and Twin 2A < Twin 2B). The genes TP63 and IRF6 function in a biological regulatory loop to coordinate epithelial proliferation and differentiation in a process that is critical for palatal fusion. The effects of the causal mutations in IRF6 can be further impacted by epigenetic dysregulation of IRF6 itself, or genes in its pathway. Our data shows evidence that changes in DNAm is a plausible mechanism that can lead to markedly distinct phenotypes, even among individuals carrying the same mutation.
Collapse
Affiliation(s)
- A. L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - E. Zeng
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - M. A. Thomas
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D. Moretti-Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M. L. Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - X. J. Xie
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - J. C. Murray
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - L. M. Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| |
Collapse
|
8
|
Wu X, Chen L, Lu W, He S, Li X, Sun L, Zhang L, Wang D, Zhang R, Liu Y, Sun Y, Feng Z, Wei Zhang V. Discovery of Novel Variants on the CHD7 Gene: A Case Series of CHARGE Syndrome. Front Genet 2022; 13:852429. [PMID: 35938004 PMCID: PMC9355507 DOI: 10.3389/fgene.2022.852429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/06/2022] [Indexed: 01/09/2023] Open
Abstract
Background: CHARGE syndrome (CS) is a single-gene genetic disorder with multiple organ malformations caused by a variant of the chromodomain helicase DNA-binding protein 7 (CHD7) gene on chromosome 8q12.1. In this study, we aimed to investigate new variants that have emerged in these cases compared with typical CS and the relationship between the genes and phenotypes. Methods: Patients with suspected genetic diseases were subjected to Whole Exome Sequencing (WES) at a genetics laboratory in Guangzhou. The average sequencing coverage depth was >200 ×, and 96% was >20 ×. The variant interpretation was manipulated according to the American College of Medical Genetics (ACMG) guidelines. Molecular data on databases for ClinVar and CHD7 were also collected and collated. We reviewed the currently described CHD7 variants and analyzed the genetic variation and phenotypic heterogeneity. Results: Data of 12 patients with CS from four hospitals in China were collected. According to gestational age, most of them (8/12) were near-term babies with a lower birth weight than their peers, averaging 2.62 kg. In this study, the most common phenotypes were respiratory tract malformations (11/12), heart malformations (10/12), and central nervous system malformations (9/12). Two fetuses were confirmed to have brain or heart abnormalities during prenatal testing, while 10/12 were found to have abnormalities during prenatal testing. The maximum Acute Physiology and Chronic Health Evaluation (APACHE II) score at admission was 19, and the average was 11.58. Five variants in the CHD7 gene c.7012C > T (p.Q2338*), c.7868delC (p.P2623Rfs*16), c.5405-3C > G, c.6936 + 2T > C, and c.8077-2A > G) were novel and were located in exons 33, 36, and introns 25, 32, and 37, respectively. There may be a positive correlation between exon location and phenotype. Conclusion: Five novel variants were discovered. These expanded the mutational spectrum of the CHD7 gene and the phenotype of CS. There may be a correlation between the new mutation sites and the phenotype, which has some reference value for the evaluation of mutation sites.
Collapse
Affiliation(s)
- Xiangtao Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Neonatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Department of Pediatrics of First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Liang Chen
- Department of Neonatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weihong Lu
- Department of Pediatrics of First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shaoru He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Neonatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,*Correspondence: Shaoru He, ; Yumei Liu,
| | - Xiaowen Li
- Neonatal Diagnosis and Treatment Center, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | | | | | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruigui Zhang
- Department of Neonatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei Liu
- Department of Neonatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,*Correspondence: Shaoru He, ; Yumei Liu,
| | - Yunxia Sun
- Department of Neonatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhichun Feng
- Department of Neonatology, Faculty of Pediatrics, Chinese PLA General Hospital, BaYi Children’s Hospital, Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
9
|
Kolenc Ž, Pirih N, Gretic P, Kunej T. Top Trends in Multiomics Research: Evaluation of 52 Published Studies and New Ways of Thinking Terminology and Visual Displays. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:681-692. [PMID: 34678084 DOI: 10.1089/omi.2021.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiomics study designs have significantly increased understanding of complex biological systems. The multiomics literature is rapidly expanding and so is their heterogeneity. However, the intricacy and fragmentation of omics data are impeding further research. To examine current trends in multiomics field, we reviewed 52 articles from PubMed and Web of Science, which used an integrated omics approach, published between March 2006 and January 2021. From studies, data regarding investigated loci, species, omics type, and phenotype were extracted, curated, and streamlined according to standardized terminology, and summarized in a previously developed graphical summary. Evaluated studies included 21 omics types or applications of omics technology such as genomics, transcriptomics, metabolomics, epigenomics, environmental omics, and pharmacogenomics, species of various phyla including human, mouse, Arabidopsis thaliana, Saccharomyces cerevisiae, and various phenotypes, including cancer and COVID-19. In the analyzed studies, diverse methods, protocols, results, and terminology were used and accordingly, assessment of the studies was challenging. Adoption of standardized multiomics data presentation in the future will further buttress standardization of terminology and reporting of results in systems science. This shall catalyze, we suggest, innovation in both science communication and laboratory medicine by making available scientific knowledge that is easier to grasp, share, and harness toward medical breakthroughs.
Collapse
Affiliation(s)
- Živa Kolenc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Pirih
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Gretic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|