1
|
Li C, Liang S, Huang Q, Zhou Z, Ding Z, Long N, Wi K, Li L, Jiang X, Fan Y, Xu Y. Minor Spliceosomal 65K/RNPC3 Interacts with ANKRD11 and Mediates HDAC3-Regulated Histone Deacetylation and Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307804. [PMID: 38837887 PMCID: PMC11304329 DOI: 10.1002/advs.202307804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Indexed: 06/07/2024]
Abstract
RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.
Collapse
Affiliation(s)
- Chen‐Hui Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Shao‐Bo Liang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Qi‐Wei Huang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhen‐Zhen Zhou
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhan Ding
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
- Key Laboratory of Insect Developmental and Evolutionary BiologyCenter for Excellence in Molecular Plant SciencesChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200032China
| | - Ni Long
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Kwang‐Chon Wi
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Liang Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Xi‐Ping Jiang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yu‐Jie Fan
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yong‐Zhen Xu
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| |
Collapse
|
2
|
Ding Z, Meng YR, Fan YJ, Xu YZ. Roles of minor spliceosome in intron recognition and the convergence with the better understood major spliceosome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1761. [PMID: 36056453 DOI: 10.1002/wrna.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 01/31/2023]
Abstract
Catalyzed by spliceosomes in the nucleus, RNA splicing removes intronic sequences from precursor RNAs in eukaryotes to generate mature RNA, which also significantly increases proteome complexity and fine-tunes gene expression. Most metazoans have two coexisting spliceosomes; the major spliceosome, which removes >99.5% of introns, and the minor spliceosome, which removes far fewer introns (only 770 at present have been predicted in the human genome). Both spliceosomes are large and dynamic machineries, each consisting of five small nuclear RNAs (snRNAs) and more than 100 proteins. However, the dynamic assembly, catalysis, and protein composition of the minor spliceosome are still poorly understood. With different splicing signals, minor introns are rare and usually distributed alone and flanked by major introns in genes, raising questions of how they are recognized by the minor spliceosome and how their processing deals with the splicing of neighboring major introns. Due to large numbers of introns and close similarities between the two machinery, cooperative, and competitive recognition by the two spliceosomes has been investigated. Functionally, many minor-intron-containing genes are evolutionarily conserved and essential. Mutations in the minor spliceosome exhibit a variety of developmental defects in plants and animals and are linked to numerous human diseases. Here, we review recent progress in the understanding of minor splicing, compare currently known components of the two spliceosomes, survey minor introns in a wide range of organisms, discuss cooperation and competition of the two spliceosomes in splicing of minor-intron-containing genes, and contributions of minor splicing mutations in development and diseases. This article is categorized under: RNA Processing > Processing of Small RNAs RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Zhan Ding
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Ran Meng
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, and Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Bezen D, Kutlu O, Mouilleron S, Rizzoti K, Dattani M, Guran T, Yeşil G. A homozygous Y443C variant in the RNPC3 is associated with severe syndromic congenital hypopituitarism and diffuse brain atrophy. Am J Med Genet A 2022; 188:2701-2706. [PMID: 35792517 DOI: 10.1002/ajmg.a.62888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
Biallelic RNPC3 variants have been reported in a few patients with growth hormone deficiency, either in isolation or in association with central hypothyroidism, congenital cataract, neuropathy, developmental delay/intellectual disability, hypogonadism, and pituitary hypoplasia. To describe a new patient with syndromic congenital hypopituitarism and diffuse brain atrophy due to RNPC3 mutations and to compare her clinical and molecular characteristics and pituitary functions with previously published patients. A 20-year-old female presented with severe growth, neuromotor, and developmental delay. Her weight, height, and head circumference were 5135 gr (-25.81 SDS), 68 cm (-16.17 SDS), and 34 cm (-17.03 SDS), respectively. She was prepubertal, and had dysmorphic facies, contractures, and spasticity in the extremities, and severe truncal hypotonia. There were no radiological signs of a skeletal dysplasia. The bone age was extremely delayed at 2 years. Investigation of pituitary function revealed growth hormone, prolactin, and thyroid-stimulating hormone deficiencies. Whole-exome sequencing revealed a novel homozygous missense (c.1328A > G; Y443C) variant in RNPC3. Cranial MRI revealed a hypoplastic anterior pituitary with diffuse cerebral and cerebellar atrophy. The Y443C variant in RNPC3 associated with syndromic congenital hypopituitarism and abnormal brain development. This report extends the RNPC3-related hypopituitarism phenotype with a severe neurodegenerative presentation.
Collapse
Affiliation(s)
- Diğdem Bezen
- Department of Pediatrics, Pediatric Endocrinology, University of Health Sciences, Prof. Dr. Cemil Taşçıoğlu City Hospital, Istanbul, Turkey
| | - Orkide Kutlu
- Department of Internal Medicine, University of Health Sciences, Prof. Dr. Cemil Taşçıoğlu City Hospital, Istanbul, Turkey
| | - Stephane Mouilleron
- Structural Biology Science Technology Platforms, The Francis Crick Institute, London, UK
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, UK
| | - Mehul Dattani
- Department and Genetics and Genomic Medicine Research and Teaching, UCL GOS Institute of Child Health, London
| | - Tulay Guran
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Gözde Yeşil
- Department of Medical Genetics, Pediatric Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Akin L, Rizzoti K, Gregory LC, Corredor B, Le Quesne Stabej P, Williams H, Buonocore F, Mouilleron S, Capra V, McGlacken-Byrne SM, Martos-Moreno GÁ, Azmanov DN, Kendirci M, Kurtoglu S, Suntharalingham JP, Galichet C, Gustincich S, Tasic V, Achermann JC, Accogli A, Filipovska A, Tuilpakov A, Maghnie M, Gucev Z, Gonen ZB, Pérez-Jurado LA, Robinson I, Lovell-Badge R, Argente J, Dattani MT. Pathogenic variants in RNPC3 are associated with hypopituitarism and primary ovarian insufficiency. Genet Med 2022; 24:384-397. [PMID: 34906446 PMCID: PMC7612377 DOI: 10.1016/j.gim.2021.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE We aimed to investigate the molecular basis underlying a novel phenotype including hypopituitarism associated with primary ovarian insufficiency. METHODS We used next-generation sequencing to identify variants in all pedigrees. Expression of Rnpc3/RNPC3 was analyzed by in situ hybridization on murine/human embryonic sections. CRISPR/Cas9 was used to generate mice carrying the p.Leu483Phe pathogenic variant in the conserved murine Rnpc3 RRM2 domain. RESULTS We described 15 patients from 9 pedigrees with biallelic pathogenic variants in RNPC3, encoding a specific protein component of the minor spliceosome, which is associated with a hypopituitary phenotype, including severe growth hormone (GH) deficiency, hypoprolactinemia, variable thyrotropin (also known as thyroid-stimulating hormone) deficiency, and anterior pituitary hypoplasia. Primary ovarian insufficiency was diagnosed in 8 of 9 affected females, whereas males had normal gonadal function. In addition, 2 affected males displayed normal growth when off GH treatment despite severe biochemical GH deficiency. In both mouse and human embryos, Rnpc3/RNPC3 was expressed in the developing forebrain, including the hypothalamus and Rathke's pouch. Female Rnpc3 mutant mice displayed a reduction in pituitary GH content but with no reproductive impairment in young mice. Male mice exhibited no obvious phenotype. CONCLUSION Our findings suggest novel insights into the role of RNPC3 in female-specific gonadal function and emphasize a critical role for the minor spliceosome in pituitary and ovarian development and function.
Collapse
Affiliation(s)
- Leyla Akin
- Department of Paediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Department of Paediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Louise C Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Beatriz Corredor
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Polona Le Quesne Stabej
- GOSgene, Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Hywel Williams
- Division of Cancer and Genetics, Genetics and Genomic Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platforms, The Francis Crick Institute, London, United Kingdom
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Sinead M McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Gabriel Á Martos-Moreno
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Paediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Dimitar N Azmanov
- Centre of Medical Research, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Department of Diagnostic Genomics, PathWest, QEII MedicalCentre, Perth, Western Australia, Australia
| | - Mustafa Kendirci
- Department of Paediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Selim Kurtoglu
- Department of Paediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Jenifer P Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Christophe Galichet
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | | | - Velibor Tasic
- University Children's Hospital, Medical School, Skopje, North Macedonia
| | - John C Achermann
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Aleksandra Filipovska
- Centre of Medical Research, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Anatoly Tuilpakov
- Department of Endocrine Genetics, Research Centre for Medical Genetics, Moscow, Russia; Department of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russia
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Department of Paediatrics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Zoran Gucev
- University Children's Hospital, Medical School, Skopje, North Macedonia
| | - Zeynep Burcin Gonen
- Oral and Maxillofacial Surgery, Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; South Australian Health and Medical Research Institute (SAHMRI), The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Robinson
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Jesús Argente
- Departments of Paediatrics and Paediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain; Department of Paediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Campus of International Excellence UAM+CSIC, Madrid, Spain
| | - Mehul T Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; South Australian Health and Medical Research Institute (SAHMRI), The University of Adelaide, Adelaide, South Australia, Australia; Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|