1
|
Shen H, Kou Q, Shao L, Zhang J, Li F. E3 ubiquitin ligase HECW2: a promising target for tumour therapy. Cancer Cell Int 2024; 24:374. [PMID: 39529070 PMCID: PMC11556196 DOI: 10.1186/s12935-024-03563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Ubiquitination is a prevalent post-translational modification that plays a crucial role in a wide range of pathophysiological processes, including cell proliferation, apoptosis, autophagy, immune response, and DNA damage repair. Among the enzymes involved in ubiquitination, E3 ubiquitin ligases are particularly significant, serving as key regulators of numerous diseases, including tumours. This review focuses on HECW2 (HECT, C2, and WW domain-containing E3 ubiquitin protein ligase 2, also known as NEDL2), providing a comprehensive overview of its interactors and its pathological roles in tumorous cancer and other diseases. The insights gained from this review may contribute to the development of novel treatment strategies for various diseases, particularly tumours.
Collapse
Affiliation(s)
- Hui Shen
- Medical College of Yan'an University, Yan'an University, Yan'an, 716000, China
| | - Qianrui Kou
- Medical College of Yan'an University, Yan'an University, Yan'an, 716000, China
| | - Linxin Shao
- Medical College of Yan'an University, Yan'an University, Yan'an, 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an, 716000, China.
- Medical Research and Experimental Center, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, 710077, China.
| | - Fang Li
- Medical College of Yan'an University, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
2
|
Imanishi R, Nakau K, Shimada S, Oka H, Takeguchi R, Tanaka R, Sugiyama T, Nii M, Okamoto T, Nagaya K, Makita Y, Yanagi K, Kaname T, Takahashi S. A novel HECW2 variant in an infant with congenital long QT syndrome. Hum Genome Var 2023; 10:17. [PMID: 37280227 PMCID: PMC10244414 DOI: 10.1038/s41439-023-00245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Pathogenic variants of HECW2 have been reported in cases of neurodevelopmental disorder with hypotonia, seizures, and absent language (NDHSAL; OMIM #617268). A novel HECW2 variant (NM_001348768.2:c.4343 T > C,p.Leu1448Ser) was identified in an NDHSAL infant with severe cardiac comorbidities. The patient presented with fetal tachyarrhythmia and hydrops and was postnatally diagnosed with long QT syndrome. This study provides evidence that HECW2 pathogenic variants can cause long QT syndrome along with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rina Imanishi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Kouichi Nakau
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Sorachi Shimada
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Hideharu Oka
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Ryo Takeguchi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Ryosuke Tanaka
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Tatsutoshi Sugiyama
- Division of Neonatology, Center for Maternity and Infant Care, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Mitsumaro Nii
- Division of Neonatology, Center for Maternity and Infant Care, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Toshio Okamoto
- Division of Neonatology, Center for Maternity and Infant Care, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Ken Nagaya
- Division of Neonatology, Center for Maternity and Infant Care, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Yoshio Makita
- Department of Genetic Counseling, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan.
| |
Collapse
|
3
|
Rodríguez-García ME, Cotrina-Vinagre FJ, Bellusci M, Hernández-Sánchez L, de Aragón AM, López-Laso E, Martín-Hernández E, Martínez-Azorín F. First splicing variant in HECW2 with an autosomal recessive pattern of inheritance and associated with NDHSAL. Hum Mutat 2022; 43:1361-1367. [PMID: 35753050 DOI: 10.1002/humu.24426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/06/2022] [Accepted: 06/21/2022] [Indexed: 11/07/2022]
Abstract
We report the clinical and genetic features of a Caucasian girl who presented a severe neurodevelopmental disorder with drug-resistant epilepsy, hypotonia, severe gastro-esophageal reflux and brain MRI anomalies. WES uncovered a novel variant in homozygosis (g.197092814_197092824delinsC) in HECW2 gene that encodes the E3 ubiquitin-protein ligase HECW2. This protein induces ubiquitination and is implicated in the regulation of several important pathways involved in neurodevelopment and neurogenesis. Furthermore, de novo heterozygous missense variants in this gene have been associated with NDHSAL. The homozygous variant of our patient disrupts the splice donor site of intron 22 and causes the elimination of exon 22 (r.3766_3917+1del) leading to an in-frame deletion of the protein (p.Leu1256_Trp1306del). Functional studies showed a two-fold increase of its RNA expression, while the protein expression level was reduced by 60%, suggesting a partial LOF mechanism of pathogenesis. Thus, this is the first patient with NDHSAL caused by an autosomal recessive splicing variant in HECW2. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain
| | - Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | - Marcello Bellusci
- Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Laura Hernández-Sánchez
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | | | - Eduardo López-Laso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain.,Unidad de Neurología Pediátrica, Hospital Universitario Reina Sofia IMIBIC, E-14004, Córdoba, Spain
| | - Elena Martín-Hernández
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain.,Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN) Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), E-28041, Madrid, Spain
| |
Collapse
|
4
|
Krami AM, Bouzidi A, Charif M, Amalou G, Charoute H, Rouba H, Roky R, Lenaers G, Barakat A, Nahili H. A homozygous nonsense HECW2 variant is associated with neurodevelopmental delay and intellectual disability. Eur J Med Genet 2022; 65:104515. [PMID: 35487419 DOI: 10.1016/j.ejmg.2022.104515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/07/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Intellectual disability is characterized by a significant impaired intellectual and adaptive functioning, affecting approximately 1-3% of the population, which can be caused by a variety of environmental and genetic factors. In this respect, de novo heterozygous HECW2 variants were associated recently with neurodevelopmental disorders associated to hypotonia, seizures, and absent language. HECW2 encodes an E3 ubiquitin-protein ligase that stabilizes and enhances transcriptional activity of p73, a key factor regulating proliferation, apoptosis, and neuronal differentiation, which are together essential for proper brain development. Here, using whole exome sequencing, we identified a homozygous nonsense HECW2 variant: c.736C > T; p.Arg246* in a proband from a Moroccan consanguineous family, with developmental delay, intellectual disability, hypotonia, generalized tonico-clonic seizures and a persistent tilted head. Thus this study describes the first homozygous HECW2 variant, inherited as an autosomal recessive pattern, contrasting with former reported de novo variants found in HECW2 patients.
Collapse
Affiliation(s)
- Al Mehdi Krami
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco.
| | - Aymane Bouzidi
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Université Angers, MitoLab Team, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France; Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Majida Charif
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco; Université Angers, MitoLab Team, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France; Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinfortmatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Rachida Roky
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P, 5366, Casablanca, Morocco
| | - Guy Lenaers
- Université Angers, MitoLab Team, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France; Service de Neurologie, CHU d'Angers, Angers, France
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Halima Nahili
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
5
|
Disruption of the Ubiquitin-Proteasome System and Elevated Endoplasmic Reticulum Stress in Epilepsy. Biomedicines 2022; 10:biomedicines10030647. [PMID: 35327449 PMCID: PMC8945847 DOI: 10.3390/biomedicines10030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The epilepsies are a broad group of conditions characterized by repeated seizures, and together are one of the most common neurological disorders. Additionally, epilepsy is comorbid with many neurological disorders, including lysosomal storage diseases, syndromic intellectual disability, and autism spectrum disorder. Despite the prevalence, treatments are still unsatisfactory: approximately 30% of epileptic patients do not adequately respond to existing therapeutics, which primarily target ion channels. Therefore, new therapeutic approaches are needed. Disturbed proteostasis is an emerging mechanism in epilepsy, with profound effects on neuronal health and function. Proteostasis, the dynamic balance of protein synthesis and degradation, can be directly disrupted by epilepsy-associated mutations in various components of the ubiquitin-proteasome system (UPS), or impairments can be secondary to seizure activity or misfolded proteins. Endoplasmic reticulum (ER) stress can arise from failed proteostasis and result in neuronal death. In light of this, several treatment modalities that modify components of proteostasis have shown promise in the management of neurological disorders. These include chemical chaperones to assist proper folding of proteins, inhibitors of overly active protein degradation, and enhancers of endogenous proteolytic pathways, such as the UPS. This review summarizes recent work on the pathomechanisms of abnormal protein folding and degradation in epilepsy, as well as treatment developments targeting this area.
Collapse
|
6
|
Shimojima Yamamoto K, Yanagishita T, Yamamoto H, Miyamoto Y, Nagata M, Ishihara Y, Miyashita Y, Asano Y, Sakata Y, Yamamoto T. Recurrent de novo pathogenic variant of WASF1 in a Japanese patient with neurodevelopmental disorder with absent language and variable seizures. Hum Genome Var 2021; 8:43. [PMID: 34845217 PMCID: PMC8629972 DOI: 10.1038/s41439-021-00176-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022] Open
Abstract
A recurrent de novo pathogenic variant of WASF1, NM_003931:c.1516C>T [p.Arg506*], was identified in a 6-year-old female Japanese patient with severe developmental delay, hypotonia, hyperkinetic behavior, and distinctive facial features. The initial report of five adult patients with WASF1 variants was the only previous report regarding variants of this gene; this is the second such report, reaffirming that rare but recurrent truncating variants of WASF1 are associated with severe neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.,Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, 162-8666, Japan
| | - Tomoe Yanagishita
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Hisako Yamamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Yusaku Miyamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.,Department of Legal Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute of Integrated Medical Sciences, Tokyo, 162-8666, Japan. .,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| |
Collapse
|
7
|
Genomic Aberrations Associated with the Pathophysiological Mechanisms of Neurodevelopmental Disorders. Cells 2021; 10:cells10092317. [PMID: 34571966 PMCID: PMC8470284 DOI: 10.3390/cells10092317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Genomic studies are increasingly revealing that neurodevelopmental disorders are caused by underlying genomic alterations. Chromosomal microarray testing has been used to reliably detect minute changes in genomic copy numbers. The genes located in the aberrated regions identified in patients with neurodevelopmental disorders may be associated with the phenotypic features. In such cases, haploinsufficiency is considered to be the mechanism, when the deletion of a gene is related to neurodevelopmental delay. The loss-of-function mutation in such genes may be evaluated using next-generation sequencing. On the other hand, the patients with increased copy numbers of the genes may exhibit different clinical symptoms compared to those with loss-of-function mutation in the genes. In such cases, the additional copies of the genes are considered to have a dominant negative effect, inducing cell stress. In other cases, not the copy number changes, but mutations of the genes are responsible for causing the clinical symptoms. This can be explained by the dominant negative effects of the gene mutations. Currently, the diagnostic yield of genomic alterations using comprehensive analysis is less than 50%, indicating the existence of more subtle alterations or genomic changes in the untranslated regions. Copy-neutral inversions and insertions may be related. Hence, better analytical algorithms specialized for the detection of such alterations are required for higher diagnostic yields.
Collapse
|