1
|
Yahia A, Li D, Lejerkrans S, Rajagopalan S, Kalnak N, Tammimies K. Whole exome sequencing and polygenic assessment of a Swedish cohort with severe developmental language disorder. Hum Genet 2024; 143:169-183. [PMID: 38300321 PMCID: PMC10881898 DOI: 10.1007/s00439-023-02636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Developmental language disorder (DLD) overlaps clinically, genetically, and pathologically with other neurodevelopmental disorders (NDD), corroborating the concept of the NDD continuum. There is a lack of studies to understand the whole genetic spectrum in individuals with DLD. Previously, we recruited 61 probands with severe DLD from 59 families and examined 59 of them and their families using microarray genotyping with a 6.8% diagnostic yield. Herein, we investigated 53 of those probands using whole exome sequencing (WES). Additionally, we used polygenic risk scores (PRS) to understand the within family enrichment of neurodevelopmental difficulties and examine the associations between the results of language-related tests in the probands and language-related PRS. We identified clinically significant variants in four probands, resulting in a 7.5% (4/53) molecular diagnostic yield. Those variants were in PAK2, MED13, PLCB4, and TNRC6B. We also prioritized additional variants for future studies for their role in DLD, including high-impact variants in PARD3 and DIP2C. PRS did not explain the aggregation of neurodevelopmental difficulties in these families. We did not detect significant associations between the language-related tests and language-related PRS. Our results support using WES as the first-tier genetic test for DLD as it can identify monogenic DLD forms. Large-scale sequencing studies for DLD are needed to identify new genes and investigate the polygenic contribution to the condition.
Collapse
Affiliation(s)
- Ashraf Yahia
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Sanna Lejerkrans
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
| | - Shyam Rajagopalan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Nelli Kalnak
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden
- Department of Speech-Language Pathology, Helsingborg Hospital, Helsingborg, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Region Stockholm, Stockholm, Sweden.
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
2
|
Kuang L, Zhang M, Wang T, Huang T, Li J, Gan R, Yu M, Cao W, Yan X. The molecular genetics of anterior segment dysgenesis. Exp Eye Res 2023; 234:109603. [PMID: 37495069 DOI: 10.1016/j.exer.2023.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Anterior segment dysgenesis is a severe developmental eye disorder that leads to blindness in children. The exact mechanisms underlying this condition remain elusive. Recently, an increasing amount of studies have focused on genes and signal transduction pathways that affect anterior segment dysgenesis;these factors include transcription factors, developmental regulators, extracellular matrix genes, membrane-related proteins, cytoskeleton proteins and other associated genes. To date, dozens of gene variants have been found to cause anterior segment dysgenesis. However, there is still a lack of effective treatments. With a broader and deeper understanding of the molecular mechanisms underlying anterior segment development in the future, gene editing technology and stem cell technology may be new treatments for anterior segment dysgenesis. Further studies on the mechanisms of how different genes influence the onset and progression of anterior segment dysgenesis are still needed.
Collapse
Affiliation(s)
- Longhao Kuang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Min Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, China
| | - Ting Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Tao Huang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Jin Li
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Run Gan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China
| | - Mingyu Yu
- Department of the Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital), Shenzhen, 518020, China
| | - Wenchao Cao
- Department of the Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital), Shenzhen, 518020, China
| | - Xiaohe Yan
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, China.
| |
Collapse
|
3
|
Okoye O, Capasso J, Kopinsky SM, Amlie-Wolf L, Levin AV, Schneider A. SOX2 pathogenic variants with normal eyes: Expanding the phenotypic spectrum. Am J Med Genet A 2023; 191:2198-2203. [PMID: 37163579 DOI: 10.1002/ajmg.a.63239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
SOX2 pathogenic variants, though rare, constitute the most commonly known genetic cause of clinical anophthalmia and microphthalmia. However, patients without major ocular malformation, but with multi-system developmental disorders, have been reported, suggesting that the range of clinical phenotypes is broader than previously appreciated. We detail two patients with bilateral structurally normal eyes along with 11 other previously published patients. Our findings suggest that there is no obvious phenotypic or genotypic pattern that may help set apart patients with normal eyes. Our patients provide further evidence for broadening the phenotypic spectrum of SOX2 mutations and re-appraising the designation of SOX2 disorder as an anophthalmia/microphthalmia syndrome. We emphasize the importance of considering SOX2 pathogenic variants in the differential diagnoses of individuals with normal eyes, who may have varying combinations of features such as developmental delay, urogenital abnormalities, gastro-intestinal anomalies, pituitary dysfunction, midline structural anomalies, and complex movement disorders, seizures or other neurological issues.
Collapse
Affiliation(s)
- Onochie Okoye
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, New York, New York, USA
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Jenina Capasso
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, New York, New York, USA
- Pediatric Genetics, Golisano Children's Hospital, University of Rochester, Rochester, New York, USA
| | | | | | - Alex V Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, New York, New York, USA
- Pediatric Genetics, Golisano Children's Hospital, University of Rochester, Rochester, New York, USA
| | - Adele Schneider
- Department of Pediatrics, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Xu Y, Li L, Shan J, Du L, Jin X, Zhou P. Extreme myopia is more susceptible to SOX2 gene than high myopia. Exp Eye Res 2023; 230:109435. [PMID: 36921835 DOI: 10.1016/j.exer.2023.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE To explore the association between two single-nucleotide polymorphisms (SNPs) in the SOX2 gene and high and extreme myopia in the Han Chinese population. MATERIALS AND METHODS A genetic association study using a case-control method was performed with 139 high myopia, 318 extreme myopia, and 918 healthy participants from the Chinese Han population. Two SNPs (rs4459940 and rs4575941) near SOX2 gene were selected for genotyping. We compared the allelic frequencies and haplotypes of the SNPs to assess their association with high and extreme myopia. This study was adjusted for sex and age of participants in the groups. RESULT The mean ages of the extreme myopia and control subjects were 47.44 ± 15.59 and 44.15 ± 14.08 years, respectively. The rs4575941 SNP of the SOX2 gene and the GG and AG genotypes showed no significant association with the risk of high myopia as opposed to the AA genotype (GG, OR = 0.94, 95% CI = 0.55-1.60, P = 0.820, Pc = NS; AG, OR = 0.91, 95% CI = 0.54-1.52, P = 0.708, Pc = NS). However, the frequency of the risk G allele of rs4575941 was significantly higher in the extreme myopia group than in the control group (OR = 1.31, 95% CI = 1.08-1.59; P = 0.007; Pc = 0.014). Furthermore, there were significant differences in the GG genotype frequency between the extreme myopia and control groups (OR = 1.77, 95% CI = 1.45-2.74, P = 0.009, Pc = 0.036). The A-G haplotype frequency was higher in the extreme group (OR = 1.27, 95% CI = 1.05-1.55, P = 0.014), while there were no significant differences found in high myopia group (OR = 1.18, 95% CI = 0.77-1.31, P = 0.979). CONCLUSION The SOX2 rs4575941 polymorphism, in Chinese Han population, contributes to the susceptibility of extreme myopia. SOX2 may thus be implicated in extreme myopia rather than in high myopia.
Collapse
Affiliation(s)
- Youmei Xu
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Lin Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jiankang Shan
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Liping Du
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemin Jin
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Pengyi Zhou
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
5
|
Cassin J, Stamou MI, Keefe KW, Sung KE, Bojo CC, Tonsfeldt KJ, Rojas RA, Ferreira Lopes V, Plummer L, Salnikov KB, Keefe DL, Ozata M, Genel M, Georgopoulos NA, Hall JE, Crowley WF, Seminara SB, Mellon PL, Balasubramanian R. Heterozygous mutations in SOX2 may cause idiopathic hypogonadotropic hypogonadism via dominant-negative mechanisms. JCI Insight 2023; 8:e164324. [PMID: 36602867 PMCID: PMC9977424 DOI: 10.1172/jci.insight.164324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Pathogenic SRY-box transcription factor 2 (SOX2) variants typically cause severe ocular defects within a SOX2 disorder spectrum that includes hypogonadotropic hypogonadism. We examined exome-sequencing data from a large, well-phenotyped cohort of patients with idiopathic hypogonadotropic hypogonadism (IHH) for pathogenic SOX2 variants to investigate the underlying pathogenic SOX2 spectrum and its associated phenotypes. We identified 8 IHH individuals harboring heterozygous pathogenic SOX2 variants with variable ocular phenotypes. These variant proteins were tested in vitro to determine whether a causal relationship between IHH and SOX2 exists. We found that Sox2 was highly expressed in the hypothalamus of adult mice and colocalized with kisspeptin 1 (KISS1) expression in the anteroventral periventricular nucleus of adult female mice. In vitro, shRNA suppression of mouse SOX2 protein in Kiss-expressing cell lines increased the levels of human kisspeptin luciferase (hKiss-luc) transcription, while SOX2 overexpression repressed hKiss-luc transcription. Further, 4 of the identified SOX2 variants prevented this SOX2-mediated repression of hKiss-luc. Together, these data suggest that pathogenic SOX2 variants contribute to both anosmic and normosmic forms of IHH, attesting to hypothalamic defects in the SOX2 disorder spectrum. Our study describes potentially novel mechanisms contributing to SOX2-related disease and highlights the necessity of SOX2 screening in IHH genetic evaluation irrespective of associated ocular defects.
Collapse
Affiliation(s)
- Jessica Cassin
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Maria I. Stamou
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kimberly W. Keefe
- Center for Infertility and Reproductive Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kaitlin E. Sung
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
| | - Celine C. Bojo
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
| | - Karen J. Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Rebecca A. Rojas
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vanessa Ferreira Lopes
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lacey Plummer
- Center for Infertility and Reproductive Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Kathryn B. Salnikov
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David L. Keefe
- Center for Infertility and Reproductive Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Myron Genel
- Section of Pediatric Endocrinology, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Neoklis A. Georgopoulos
- Division of Endocrinology, Department of Medicine, University of Patras Medical School, Patras, Greece
| | - Janet E. Hall
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - William F. Crowley
- Endocrine Unit, Department of Medicine, and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephanie B. Seminara
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences; Center for Reproductive Science and Medicine; and
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Ravikumar Balasubramanian
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Winters SJ. Hypogonadism in Males With Genetic Neurodevelopmental Syndromes. J Clin Endocrinol Metab 2022; 107:e3974-e3989. [PMID: 35913018 DOI: 10.1210/clinem/dgac421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 11/19/2022]
Abstract
Genetic syndromes that affect the nervous system may also disrupt testicular function, and the mechanisms for these effects may be interrelated. Most often neurological signs and symptoms predominate and hypogonadism remains undetected and untreated, while in other cases, a thorough evaluation of a hypogonadal male reveals previously unrecognized ataxia, movement disorder, muscle weakness, tremor, or seizures, leading to a syndromic diagnosis. Androgen deficiency in patients with neurological diseases may aggravate muscle weakness and fatigue and predispose patients to osteoporosis and obesity. The purpose of this mini review is to provide a current understanding of the clinical, biochemical, histologic, and genetic features of syndromes in which male hypogonadism and neurological dysfunction may coexist and may be encountered by the clinical endocrinologist.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism & Diabetes, University of Louisville, Louisville, KY, USA
| |
Collapse
|
7
|
Novel Genetic Diagnoses in Septo-Optic Dysplasia. Genes (Basel) 2022; 13:genes13071165. [PMID: 35885948 PMCID: PMC9320703 DOI: 10.3390/genes13071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Septo-optic dysplasia (SOD) is a developmental phenotype characterized by midline neuroradiological anomalies, optic nerve hypoplasia, and pituitary anomalies, with a high degree of variability and additional systemic anomalies present in some cases. While disruption of several transcription factors has been identified in SOD cohorts, most cases lack a genetic diagnosis, with multifactorial risk factors being thought to play a role. Exome sequencing in a cohort of families with a clinical diagnosis of SOD identified a genetic diagnosis in 3/6 families, de novo variants in SOX2, SHH, and ARID1A, and explored variants of uncertain significance in the remaining three. The outcome of this study suggests that investigation for a genetic etiology is warranted in individuals with SOD, particularly in the presence of additional syndromic anomalies and when born to older, multigravida mothers. The identification of causative variants in SHH and ARID1A further expands the phenotypic spectra associated with these genes and reveals novel pathways to explore in septo-optic dysplasia.
Collapse
|
8
|
Lin ZB, Li J, Ye L, Sun HS, Yu AY, Chen SH, Li FF. Novel SOX2 mutation in autosomal dominant cataract-microcornea syndrome. BMC Ophthalmol 2022; 22:70. [PMID: 35148715 PMCID: PMC8840263 DOI: 10.1186/s12886-022-02291-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Background Congenital cataract-microcornea syndrome (CCMC) is characterized by the association of congenital cataract and microcornea without any other systemic anomaly or dysmorphism. Although several causative genes have been reported in patients with CCMC, the genetic etiology of CCMC is yet to be clearly understood. Purpose To unravel the genetic cause of autosomal dominant family with CCMC. Methods All patients and available family members underwent a comprehensive ophthalmologic clinical examination in the hospital by expert ophthalmologists and carried out to clinically diagnosis. All the patients were screened by whole-exome sequencing and then validated using co-segregation by Sanger sequencing. Results Four CCMC patients from a Chinese family and five unaffected family members were enrolled in this study. Using whole-exome sequencing, a missense mutation c.295G > T (p.A99S, NM_003106.4) in the SOX2 gene was identified and validated by segregation analysis. In addition, this missense mutation was predicted to be damaging by multiple predictive tools. Variant p.Ala99Ser was located in a conservation high mobility group (HMG)-box domain in SOX2 protein, with a potential pathogenic impact of p.Ala99Ser on protein level. Conclusions A novel missense mutation (c.295G > T, p.Ala99Ser) in the SOX2 gene was found in this Han Chinese family with congenital cataract and microcornea. Our study determined that mutations in SOX2 were associated with CCMC, warranting further investigations on the pathogenesis of this disorder. This result expands the mutation spectrum of SOX2 and provides useful information to study the molecular pathogenesis of CCMC.
Collapse
Affiliation(s)
- Zhi-Bo Lin
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin Li
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Ye
- Shanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Sen Sun
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - A-Yong Yu
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi-Hao Chen
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fen-Fen Li
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|