1
|
Oro M, Tarsitano M, Rivieccio M, Piscopo C, Petti MT, Bukvic N, Della Monica M, Chetta M. An integration into the diagnostic workflow in a pediatric patient suspected of having Marfan syndrome. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00365-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
The genetic approach to Marfan syndrome (MFS) has evolved over the last few decades, as has our understanding of the variants’ potential structural and functional consequences. It has been proposed that next-generation sequencing be used to improve genetic diagnosis and patient management. To this end, we used a targeted NGS custom panel to perform genetic analysis in a patient with MFS and his or her family members.
Case presentation
Here, we describe a novel germ-line heterozygous missense variant (transversion c.5371 T > A) found in exon 43 of the FBN1 gene of a patient (proband) with MFS. FBN1 (ENSG0000166147) and TGFB2 (ENSG0000166147) were included in a targeted sequencing panel for MFS (ENSG0000163513). This new variant c.5371 T > A was identified only in the proband, not in unaffected family members or healthy controls.
Conclusions
Given the massive amount of data generated by gene panel analysis, clinical interpretation of genetic variants may become more difficult. As a result, 3D modeling and multidisciplinary approaches should be used in the analysis and annotation of observed variants. The analysis of the protein’s conformational structure in relation to the identified variant could provide useful information. These data can be used to classify observed variants (pathogenic vs non-pathogenic) linked to the MFS phenotype, as well as to track disease progression and potential target treatments.
Collapse
|