1
|
Castellini G, Merola GP, Baccaredda Boy O, Pecoraro V, Bozza B, Cassioli E, Rossi E, Bessi V, Sorbi S, Nacmias B, Ricca V. Emotional dysregulation, alexithymia and neuroticism: a systematic review on the genetic basis of a subset of psychological traits. Psychiatr Genet 2023; 33:79-101. [PMID: 36729042 PMCID: PMC10158611 DOI: 10.1097/ypg.0000000000000335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/24/2022] [Indexed: 02/03/2023]
Abstract
Neuroticism, alexithymia and emotion dysregulation are key traits and known risk factors for several psychiatric conditions. In this systematic review, the aim is to evaluate the genetic contribution to these psychological phenotypes. A systematic review of articles found in PubMed was conducted. Search terms included 'genetic', 'GWAS', 'neuroticism', 'alexithymia' and 'emotion dysregulation'. Risk of bias was assessed utilizing the STREGA checklist. Two hundred two papers were selected from existing literature based on the inclusion and exclusion criteria. Among these, 27 were genome-wide studies and 175 were genetic association studies. Single gene association studies focused on selected groups of genes, mostly involved in neurotransmission, with conflicting results. GWAS studies on neuroticism, on the other hand, found several relevant and replicated intergenic and intronic loci affecting the expression and regulation of crucial and well-known genes (such as DRD2 and CRHR1). Mutations in genes coding for trascriptional factors were also found to be associated with neuroticism (DCC, XKR6, TCF4, RBFOX1), as well as a noncoding regulatory RNA (LINC00461). On the other hand, little GWAS data are available on alexythima and emotional dysregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valentina Bessi
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Sandro Sorbi
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Neurology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
2
|
Emerging roles of endoplasmic reticulum proteostasis in brain development. Cells Dev 2022; 170:203781. [DOI: 10.1016/j.cdev.2022.203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
|
3
|
Díaz-Hung ML, Hetz C. Proteostasis and resilience: on the interphase between individual's and intracellular stress. Trends Endocrinol Metab 2022; 33:305-317. [PMID: 35337729 DOI: 10.1016/j.tem.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
A long proportion of the population is resilient to the negative consequences of stress. Glucocorticoids resulting from endocrine responses to stress are essential adaptive mediators, but also drive alterations to brain function, negatively impacting neuronal connectivity, synaptic plasticity, and memory-related processes. Recent evidence has indicated that organelle function and cellular stress responses are relevant determinant of vulnerability and resistance to environmental stress. At the molecular level, a fundamental mechanism of cellular stress adaptation is the maintenance of proteostasis, which also have key roles in sustaining basal neuronal function. Here, we discuss recent evidence suggesting that proteostasis unbalance at the level of the endoplasmic reticulum, the main site for protein folding in the cell, represents a possible mechanistic link between individuals and cellular stress.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
4
|
Liu SY, Wang W, Cai ZY, Yao LF, Chen ZW, Wang CY, Zhao B, Li KS. Polymorphism -116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer's disease. CNS Neurosci Ther 2013; 19:229-34. [PMID: 23421912 DOI: 10.1111/cns.12064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/14/2023] Open
Abstract
AIM Alzheimer's disease (AD) is a multifactor disease that has been reported to have a close association with endoplasmic reticulum (ER) stress response. In the response, the regulator factor human X-box-binding protein 1 (XBP1) has been shown to facilitate the refolding and degradation of misfolded proteins, prevent neurotoxicity of amyloid-beta (Aβ) and tau, and play an important role in the survival of neurons. The aim in the study was to analyze the potential association between the -116C/G polymorphism of XBP1 and the risk of AD. METHODS The association between -116C/G polymorphism of XBP1 promoter and possible risk of AD was assessed among 276 patients with AD and 254 matched healthy individuals in a case-control study. RESULTS Overall, there was a significantly statistical difference in genotype (P = 0.0354) and allele frequencies (P = 0.0150, OR = 1.3642, 95% CI = 1.0618-1.7528) between the AD subjects and control subjects, showing that the -116C/G polymorphism of XBP1 might lead to increased susceptibility for AD in a Chinese Han population. In addition, the -116CG and -116GG genotypes were significantly associated with increased AD risk in female (P = 0.0217) and in subjects with APOE є4 (-) (P = 0.0070) in stratified analyses, and the -116CC genotype was significantly associated with fast cognitive deterioration in the AD patients (P = 0.0270). CONCLUSION The study supports a role for the -116C/G polymorphism of XBP1 gene in the pathogenesis of AD, and further studies with a larger sample size and detailed data should be performed in other populations.
Collapse
Affiliation(s)
- Sheng-Yuan Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical College, Zhanjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 2011; 23:239-52. [PMID: 21288706 DOI: 10.1016/j.ceb.2011.01.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
Abstract
Several neurodegenerative diseases share common neuropathology, primarily featuring the presence in the brain of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders, highlighting perturbations in the homeostasis of the endoplasmic reticulum (ER). Signs of ER stress have been detected in most experimental models of neurological disorders and more recently in brain samples from human patients with neurodegenerative disease. To cope with ER stress, cells activate an integrated signaling response termed the unfolded protein response (UPR), which aims to reestablish homeostasis in part through regulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss the particular mechanisms currently proposed to be involved in the generation of protein folding stress in different neurodegenerative conditions and speculate about possible therapeutic interventions.
Collapse
Affiliation(s)
- Soledad Matus
- Center for Molecular Studies of Cell, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
6
|
Yilmaz E, Berberoglu M, Akar N. Relationship Between Functional Promoter Polymorphism in the XBP1 Gene (-116C/G) and Obesity. Clin Appl Thromb Hemost 2008; 16:99-102. [DOI: 10.1177/1076029608323498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum stress is a central feature of obesity, insulin resistance, and type 2 diabetes. A polymorphism of the XBP1 gene (-116C/G), a transcription factor that modulates the endoplasmic reticulum stress response, causes an impairment of its positive feedback system. The authors examined a role of the polymorphism in the development of obesity. The polymorphism was investigated in clinically obese children and compared with controls. Significant difference of genotype distribution was observed, which suggested that the -116C/G genotype may be a risk factor for at least pediatric obesity.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Biotechnology Institute, Ankara University, Ankara, Turkey,
| | - Merih Berberoglu
- Department of Pediatric Endocrinology, Ankara University, Ankara, Turkey
| | - Nejat Akar
- Department of Pediatric Molecular Genetics, Ankara University, Ankara, Turkey
| |
Collapse
|
7
|
Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A 2008; 105:757-62. [PMID: 18178615 DOI: 10.1073/pnas.0711094105] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (XBP-1) is a key transcriptional regulator of the UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation. However, the role of the UPR in the CNS has not been addressed directly. Here we describe the generation of a brain-specific XBP-1 conditional KO strain (XBP-1(Nes-/-)). XBP-1(Nes-/-) mice are viable and do not develop any spontaneous neurological dysfunction, although ER stress signaling in XBP-1(Nes-/-) primary neuronal cell cultures was impaired. To assess the function of XBP-1 in pathological conditions involving protein misfolding and ER stress, we infected XBP-1(Nes-/-) mice with murine prions. To our surprise, the activation of stress responses triggered by prion replication was not influenced by XBP-1 deficiency. Neither prion aggregation, neuronal loss, nor animal survival was affected. Hence, this most highly conserved arm of the UPR may not contribute to the occurrence or pathology of neurodegenerative conditions associated with prion protein misfolding despite predictions that such diseases are related to ER stress and irreversible neuronal damage.
Collapse
|
8
|
Abstract
Cytoplasmic splicing is one of the major regulatory mechanisms of the unfolded protein response (UPR). The molecular mechanism of cytoplasmic splicing is unique and completely different from that of conventional nuclear splicing. The mammalian substrate of cytoplasmic splicing is XBP1 pre-mRNA, which is converted to spliced mRNA in response to UPR, leading to the production of an active transcription factor [pXBP1(S)] responsible for UPR. Interestingly, XBP1 pre-mRNA is also translated into a functional protein [pXBP1(U)] that negatively regulates the UPR. Thus, mammalian cells can quickly adapt to a change in conditions in the endoplasmic reticulum by switching proteins encoded in the mRNA from a negative regulator to an activator. This elaborate system contributes to various cellular functions, including plasma cell differentiation, viral infections, and carcinogenesis. In this short review, I briefly summarize research on cytoplasmic splicing and focus on current hot topics.
Collapse
Affiliation(s)
- Hiderou Yoshida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan., PRESTO-SORST, Japan Science and Technology Agency, Kyoto, Japan.
| |
Collapse
|
9
|
Abstract
Molecular genetic studies of personality began with two high impact papers in 1996 that showed provisional associations between the dopamine DRD4 exon III repeat region and Novelty Seeking/Extraversion. These first two reports were shortly followed by an investigation linking Neuroticism/Harm Avoidance with the serotonin transporter (SLC6A4) promoter region polymorphism (5-HTTLPR). In the ensuing decade, thousands of subjects have been studied for association between these genes and personality, assessed by using self-report questionnaires, with erratic success in replication of the first findings for Novelty Seeking (DRD4) and Harm Avoidance (5-HTTLPR). Small effect sizes characteristic of non-Mendelian traits, polygenic patterns of inheritance and true heterogeneity between studies confound attempts to reach a consensus regarding the role of common polymorphisms in contributing to personality domains. Nevertheless, the current state of personality genetics is far from being bleak. Several new paradigms especially functional neuroimaging or 'imaging genomics' have strengthened the connection between 5-HTTLPR and anxiety-related personality traits. The demonstrations that early environmental information can considerably strengthen and even uncover associations between genes and behavior (Caspi's seminal studies and more recently the demonstration that early environment impacts on DRD4 and Novelty Seeking) are notable and herald a new era of personality genetics. Finally, consideration of the broader phenotypic expression of common polymorphisms (e.g. the 'social brain', altruism, etc.) and the use of new experimental paradigms including neurophysiological, neuropsychological and computer games that go beyond the narrow self-report questionnaire design will enable a deeper understanding of how common genetic polymorphisms modulate human behavior. Human personality, defined by Webster as the quality or state of being a person or the complex of characteristics that distinguishes an individual, surely requires a more encompassing view towards understanding its complex molecular genetic architecture.
Collapse
Affiliation(s)
- R P Ebstein
- Department of Psychology and Scheinfeld Center for Genetic Studies in the Social Sciences, Mount Scopus, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
10
|
Kusumi I, Masui T, Kakiuchi C, Suzuki K, Akimoto T, Hashimoto R, Kunugi H, Kato T, Koyama T. Relationship between XBP1 genotype and personality traits assessed by TCI and NEO-FFI. Neurosci Lett 2005; 391:7-10. [PMID: 16154272 DOI: 10.1016/j.neulet.2005.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/10/2005] [Accepted: 08/12/2005] [Indexed: 11/22/2022]
Abstract
There have been several researches on the role of personality in the pathophysiology of bipolar disorder. Recently, a polymorphism of XBP1, a pivotal gene in the endoplasmic reticulum (ER) stress response, was shown to contribute to the genetic risk factor for bipolar disorder. Therefore, in this study, we examined the relationship between the XBP1 gene polymorphism and the personality traits assessed by two self-rating scales, a shortened version of Temperament and Character Inventory (TCI) and NEO-Five Factor Inventory (NEO-FFI) in healthy subjects. The present results suggested that the XBP1 gene polymorphism was associated with the NEO-FFI score of neuroticism in female subjects. However, no significant differences in the other personality scale scores of both assessments were observed among normal subjects with -116C/C, C/G and G/G genotypes. Further investigations are necessary to examine the relationship in patients with bipolar disorder, or use full version of various self-rating personality assessments.
Collapse
Affiliation(s)
- Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Sapporo, Hokkaido 060-8638, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|