1
|
Carrette LLG, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice. eNeuro 2023; 10:ENEURO.0019-23.2023. [PMID: 37295945 PMCID: PMC10306126 DOI: 10.1523/eneuro.0019-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, California 92093
| | - Pasha A Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut 06511
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06511
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Andres Collazo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Olivier George
- Department of Psychiatry, UC San Diego, California 92093
| |
Collapse
|
2
|
Carrette LL, Kimbrough A, Davoudian PA, Kwan AC, Collazo A, George O. Hyperconnectivity of two separate long-range cholinergic systems contributes to the reorganization of the brain functional connectivity during nicotine withdrawal in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534836. [PMID: 37034602 PMCID: PMC10081261 DOI: 10.1101/2023.03.29.534836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.
Collapse
Affiliation(s)
| | - Adam Kimbrough
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| | - Pasha A. Davoudian
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, United States
| | - Andres Collazo
- Beckman Institute, CalTech, Pasadena, CA, 91125, United States
| | - Olivier George
- Department of Psychiatry, UC San Diego, La Jolla, CA, 92032, United States
| |
Collapse
|
3
|
Chang LH, Whitfield JB, Liu M, Medland SE, Hickie IB, Martin NG, Verhulst B, Heath AC, Madden PA, Statham DJ, Gillespie NA. Associations between polygenic risk for tobacco and alcohol use and liability to tobacco and alcohol use, and psychiatric disorders in an independent sample of 13,999 Australian adults. Drug Alcohol Depend 2019; 205:107704. [PMID: 31731259 DOI: 10.1016/j.drugalcdep.2019.107704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/18/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Substance use, substance use disorders (SUDs), and psychiatric disorders commonly co-occur. Genetic risk common to these complex traits is an important explanation; however, little is known about how polygenic risk for tobacco or alcohol use overlaps the genetic risk for the comorbid SUDs and psychiatric disorders. METHODS We constructed polygenic risk scores (PRSs) using GWAS meta-analysis summary statistics from a large discovery sample, GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN), for smoking initiation (SI; N = 631,564), age of initiating regular smoking (AI; N = 258,251), cigarettes per day (CPD; N = 258,999), smoking cessation (SC; N = 312,273), and drinks per week (DPW; N = 527,402). We then estimated the fixed effect of these PRSs on the liability to 15 phenotypes related to tobacco and alcohol use, substance use disorders, and psychiatric disorders in an independent target sample of Australian adults. RESULTS After adjusting for multiple testing, 10 of 75 combinations of discovery and target phenotypes remained significant. PRS-SI (R2 range: 1.98%-5.09 %) was positively associated with SI, DPW, and with DSM-IV and FTND nicotine dependence, and conduct disorder. PRS-AI (R2: 3.91 %) negatively associated with DPW. PRS-CPD (R2: 1.56 %-1.77 %) positively associated with DSM-IV nicotine dependence and conduct disorder. PRS-DPW (R2: 3.39 %-6.26 %) positively associated with only DPW. The variation of DPW was significantly influenced by sex*PRS-SI, sex*PRS-AI and sex*PRS-DPW. Such interaction effect was not detected in the other 14 phenotypes. CONCLUSIONS Polygenic risks associated with tobacco use are also associated with liability to alcohol consumption, nicotine dependence, and conduct disorder.
Collapse
Affiliation(s)
- Lun-Hsien Chang
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia; Faculty of Medicine, the University of Queensland, 20 Weightman St, Herston QLD 4006, Australia.
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia.
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota Twin Cities, 75 E River Rd, Minneapolis, MN 55455, USA.
| | - Sarah E Medland
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia.
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, 94 Mallett St, Camperdown NSW 2050, USA.
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia.
| | - Brad Verhulst
- Department of psychology, Michigan State University, 316 Physics Road #262, East Lansing, MI 48824, USA.
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Pamela A Madden
- Department of Psychiatry, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Dixie J Statham
- School of Health and Life Sciences, Federation University, Federation University Australia, PO Box 663, Ballarat, VIC 3353, Australia.
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioural Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
4
|
Hällfors J, Palviainen T, Surakka I, Gupta R, Buchwald J, Raevuori A, Ripatti S, Korhonen T, Jousilahti P, Madden PA, Kaprio J, Loukola A. Genome-wide association study in Finnish twins highlights the connection between nicotine addiction and neurotrophin signaling pathway. Addict Biol 2019. [PMID: 29532581 PMCID: PMC6519128 DOI: 10.1111/adb.12618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heritability of nicotine dependence based on family studies is substantial. Nevertheless, knowledge of the underlying genetic architecture remains meager. Our aim was to identify novel genetic variants responsible for interindividual differences in smoking behavior. We performed a genome-wide association study on 1715 ever smokers ascertained from the population-based Finnish Twin Cohort enriched for heavy smoking. Data imputation used the 1000 Genomes Phase I reference panel together with a whole genome sequence-based Finnish reference panel. We analyzed three measures of nicotine addiction-smoking quantity, nicotine dependence and nicotine withdrawal. We annotated all genome-wide significant SNPs for their functional potential. First, we detected genome-wide significant association on 16p12 with smoking quantity (P = 8.5 × 10-9 ), near CLEC19A. The lead-SNP stands 22 kb from a binding site for NF-κB transcription factors, which play a role in the neurotrophin signaling pathway. However, the signal was not replicated in an independent Finnish population-based sample, FINRISK (n = 6763). Second, nicotine withdrawal showed association on 2q21 in an intron of TMEM163 (P = 2.1 × 10-9 ), and on 11p15 (P = 6.6 × 10-8 ) in an intron of AP2A2, and P = 4.2 × 10-7 for a missense variant in MUC6, both involved in the neurotrophin signaling pathway). Third, association was detected on 3p22.3 for maximum number of cigarettes smoked per day (P = 3.1 × 10-8 ) near STAC. Associating CLEC19A and TMEM163 SNPs were annotated to influence gene expression or methylation. The neurotrophin signaling pathway has previously been associated with smoking behavior. Our findings further support the role in nicotine addiction.
Collapse
Affiliation(s)
- Jenni Hällfors
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Richa Gupta
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Jadwiga Buchwald
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Anu Raevuori
- Department of Public HealthUniversity of Helsinki Finland
- Department of Adolescent PsychiatryHelsinki University Central Hospital Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
- Department of Public HealthUniversity of Helsinki Finland
- Wellcome Trust Sanger Institute UK
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland Finland
| | | | - Pamela A.F. Madden
- Department of PsychiatryWashington University School of Medicine Saint Louis MO USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
- Department of Public HealthUniversity of Helsinki Finland
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| |
Collapse
|
5
|
Gupta R, Qaiser B, He L, Hiekkalinna TS, Zheutlin AB, Therman S, Ollikainen M, Ripatti S, Perola M, Salomaa V, Milani L, Cannon TD, Madden PAF, Korhonen T, Kaprio J, Loukola A. Neuregulin signaling pathway in smoking behavior. Transl Psychiatry 2017; 7:e1212. [PMID: 28892072 PMCID: PMC5611747 DOI: 10.1038/tp.2017.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding molecular processes that link comorbid traits such as addictions and mental disorders can provide novel therapeutic targets. Neuregulin signaling pathway (NSP) has previously been implicated in schizophrenia, a neurodevelopmental disorder with high comorbidity to smoking. Using a Finnish twin family sample, we have previously detected association between nicotine dependence and ERBB4 (a neuregulin receptor), and linkage for smoking initiation at the ERBB4 locus on 2q33. Further, Neuregulin3 has recently been shown to associate with nicotine withdrawal in a behavioral mouse model. In this study, we scrutinized association and linkage between 15 036 common, low frequency and rare genetic variants in 10 NSP genes and phenotypes encompassing smoking and alcohol use. Using the Finnish twin family sample (N=1998 from 740 families), we detected 66 variants (representing 23 LD blocks) significantly associated (false discovery rate P<0.05) with smoking initiation, nicotine dependence and nicotine withdrawal. We comprehensively annotated the associated variants using expression (eQTL) and methylation quantitative trait loci (meQTL) analyses in a Finnish population sample. Among the 66 variants, we identified 25 eQTLs (in NRG1 and ERBB4), 22 meQTLs (in NRG3, ERBB4 and PSENEN), a missense variant in NRG1 (rs113317778) and a splicing disruption variant in ERBB4 (rs13385826). Majority of the QTLs in blood were replicated in silico using publicly available databases, with additional QTLs observed in brain. In conclusion, our results support the involvement of NSP in smoking behavior but not in alcohol use and abuse, and disclose functional potential for 56 of the 66 associated single-nucleotide polymorphism.
Collapse
Affiliation(s)
- R Gupta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - B Qaiser
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - L He
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - T S Hiekkalinna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - A B Zheutlin
- Department of Psychology, Yale University, New Haven, CT, USA
| | - S Therman
- National Institute for Health and Welfare, Helsinki, Finland
| | - M Ollikainen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - S Ripatti
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - M Perola
- National Institute for Health and Welfare, Helsinki, Finland
| | - V Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - L Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - T D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
| | - P A F Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - T Korhonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - J Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - A Loukola
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Zuo L, Tan Y, Li CSR, Wang Z, Wang K, Zhang X, Lin X, Chen X, Zhong C, Wang X, Guo X, Wang J, Lu L, Luo X. Associations of rare nicotinic cholinergic receptor gene variants to nicotine and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2016; 171:1057-1071. [PMID: 27473937 PMCID: PMC5587505 DOI: 10.1002/ajmg.b.32476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/06/2016] [Indexed: 12/23/2022]
Abstract
Nicotine's rewarding effects are mediated through distinct subunits of nAChRs, encoded by different nicotinic cholinergic receptor (CHRN) genes and expressed in discrete regions in the brain. In the present study, we aimed to test the associations between rare variants at CHRN genes and nicotine dependence (ND), and alcohol dependence (AD). A total of 26,498 subjects with nine different neuropsychiatric disorders in 15 independent cohorts, which were genotyped on Illumina, Affymetrix, or PERLEGEN microarray platforms, were analyzed. Associations between rare variants (minor allele frequency (MAF) <0.05) at CHRN genes and nicotine dependence, and alcohol dependence were tested. The mRNA expression of all Chrn genes in whole mouse brain and 10 specific brain areas was investigated. All CHRN genes except the muscle-type CHRNB1, including eight genomic regions containing 11 neuronal CHRN genes and three genomic regions containing four muscle-type CHRN genes, were significantly associated with ND, and/or AD. All of these genes were expressed in the mouse brain. We conclude that CHRNs are associated with ND (mainly) and AD, supporting the hypothesis that the full catalog of ND/AD risk genes may contain most neuronal nAChRs-encoding genes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiren Wang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Xiangyang Zhang
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiandong Lin
- Provincial Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine and Department of Psychology, University of Nevada, Las Vegas, NV, USA
| | - Chunlong Zhong
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai First People’s Hospital, Shanghai Jiao-Tong University, Shanghai, China
| | - Xiaoyun Guo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Jijun Wang
- Department of EEG & Neuroimaging, Shanghai Mental Health Center, Shanghai, China
| | - Lu Lu
- Provincial Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, China
- Departments of Genetics, Genomics, Informatics, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
7
|
Baurley JW, Edlund CK, Pardamean CI, Conti DV, Bergen AW. Smokescreen: a targeted genotyping array for addiction research. BMC Genomics 2016; 17:145. [PMID: 26921259 PMCID: PMC4769529 DOI: 10.1186/s12864-016-2495-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Addictive disorders are a class of chronic, relapsing mental disorders that are responsible for increased risk of mental and medical disorders and represent the largest, potentially modifiable cause of death. Tobacco dependence is associated with increased risk of disease and premature death. While tobacco control efforts and therapeutic interventions have made good progress in reducing smoking prevalence, challenges remain in optimizing their effectiveness based on patient characteristics, including genetic variation. In order to maximize collaborative efforts to advance addiction research, we have developed a genotyping array called Smokescreen. This custom array builds upon previous work in the analyses of human genetic variation, the genetics of addiction, drug metabolism, and response to therapy, with an emphasis on smoking and nicotine addiction. RESULTS The Smokescreen genotyping array includes 646,247 markers in 23 categories. The array design covers genome-wide common variation (65.67, 82.37, and 90.72% in African (YRI), East Asian (ASN), and European (EUR) respectively); most of the variation with a minor allele frequency ≥ 0.01 in 1014 addiction genes (85.16, 89.51, and 90.49% for YRI, ASN, and EUR respectively); and nearly all variation from the 1000 Genomes Project Phase 1, NHLBI GO Exome Sequencing Project and HapMap databases in the regions related to smoking behavior and nicotine metabolism: CHRNA5-CHRNA3-CHRNB4 and CYP2A6-CYP2B6. Of the 636 pilot DNA samples derived from blood or cell line biospecimens that were genotyped on the array, 622 (97.80%) passed quality control. In passing samples, 90.08% of markers passed quality control. The genotype reproducibility in 25 replicate pairs was 99.94%. For 137 samples that overlapped with HapMap2 release 24, the genotype concordance was 99.76%. In a genome-wide association analysis of the nicotine metabolite ratio in 315 individuals participating in nicotine metabolism laboratory studies, we identified genome-wide significant variants in the CYP2A6 region (min p = 9.10E-15). CONCLUSIONS We developed a comprehensive genotyping array for addiction research and demonstrated its analytic validity and utility through pilot genotyping of HapMap and study samples. This array allows researchers to perform genome-wide, candidate gene, and pathway-based association analyses of addiction, tobacco-use, treatment response, comorbidities, and associated diseases in a standardized, high-throughput platform.
Collapse
Affiliation(s)
- James W Baurley
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - Christopher K Edlund
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - Carissa I Pardamean
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - David V Conti
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| | - Andrew W Bergen
- BioRealm LLC, 6101 W. Centinela Ave., Suite 270, Culver City, CA, 90230-6359, USA.
| |
Collapse
|
8
|
Abstract
An aversive abstinence syndrome manifests 4-24 h following cessation of chronic use of nicotine-containing products. Symptoms peak on approximately the 3rd day and taper off over the course of the following 3-4 weeks. While the severity of withdrawal symptoms is largely determined by how nicotine is consumed, certain short nucleotide polymorphisms (SNPs) have been shown to predispose individuals to consume larger amounts of nicotine more frequently--as well as to more severe symptoms of withdrawal when trying to quit. Additionally, rodent behavioral models and transgenic mouse models have revealed that specific nicotinic acetylcholine receptor (nAChR) subunits, cellular components, and neuronal circuits are critical to the expression of withdrawal symptoms. Consequently, by continuing to map neuronal circuits and nAChR subpopulations that underlie the nicotine withdrawal syndrome--and by continuing to enumerate genes that predispose carriers to nicotine addiction and exacerbated withdrawal symptoms--it will be possible to pursue personalized therapeutics that more effectively treat nicotine addiction.
Collapse
Affiliation(s)
- Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
9
|
Flora AV, Zambrano CA, Gallego X, Miyamoto JH, Johnson KA, Cowan KA, Stitzel JA, Ehringer MA. Functional characterization of SNPs in CHRNA3/B4 intergenic region associated with drug behaviors. Brain Res 2013; 1529:1-15. [PMID: 23872218 DOI: 10.1016/j.brainres.2013.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 11/17/2022]
Abstract
The cluster of human neuronal nicotinic receptor genes (CHRNA5/A3/B4) (15q25.1) has been associated with a variety of smoking and drug-related behaviors, as well as risk for lung cancer. CHRNA3/B4 intergenic single nucleotide polymorphisms (SNPs) rs1948 and rs8023462 have been associated with early initiation of alcohol and tobacco use, and rs6495309 has been associated with nicotine dependence and risk for lung cancer. An in vitro luciferase expression assay was used to determine whether these SNPs and surrounding sequences contribute to differences in gene expression using cell lines either expressing proteins characteristic of neuronal tissue or derived from lung cancers. Electrophoretic mobility shift assays (EMSAs) were performed to investigate whether nuclear proteins from these cell lines bind SNP alleles differentially. Results from expression assays were dependent on cell culture type and haplotype. EMSAs indicated that rs8023462 and rs6495309 bind nuclear proteins in an allele-specific way. Additionally, GATA transcription factors appeared to bind rs8023462 only when the minor/risk allele was present. Much work has been done to describe the rat Chrnb4/a3 intergenic region, but few studies have examined the human intergenic region effects on expression; therefore, these studies greatly aid human genetic research as it relates to observed nicotine phenotypes, lung cancer risk and potential underlying genetic mechanisms. Data from these experiments support the hypothesis that SNPs associated with human addiction-related phenotypes and lung cancer risk can affect gene expression, and are potential therapeutic targets. Additionally, this is the first evidence that rs8023462 interacts with GATA transcription factors to influence gene expression.
Collapse
Affiliation(s)
- Amber V Flora
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO 80303, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Karoly HC, Harlaar N, Hutchison KE. Substance use disorders: a theory-driven approach to the integration of genetics and neuroimaging. Ann N Y Acad Sci 2013; 1282:71-91. [DOI: 10.1111/nyas.12074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hollis C. Karoly
- Department of Psychology and Neuroscience; University of Colorado at Boulder; Boulder; Colorado
| | - Nicole Harlaar
- Department of Psychology and Neuroscience; University of Colorado at Boulder; Boulder; Colorado
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience; University of Colorado at Boulder; Boulder; Colorado
| |
Collapse
|
11
|
Amin N, Hottenga JJ, Hansell NK, Janssens ACJW, de Moor MHM, Madden PAF, Zorkoltseva IV, Penninx BW, Terracciano A, Uda M, Tanaka T, Esko T, Realo A, Ferrucci L, Luciano M, Davies G, Metspalu A, Abecasis GR, Deary IJ, Raikkonen K, Bierut LJ, Costa PT, Saviouk V, Zhu G, Kirichenko AV, Isaacs A, Aulchenko YS, Willemsen G, Heath AC, Pergadia ML, Medland SE, Axenovich TI, de Geus E, Montgomery GW, Wright MJ, Oostra BA, Martin NG, Boomsma DI, van Duijn CM. Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions. Eur J Hum Genet 2012; 21:876-82. [PMID: 23211697 DOI: 10.1038/ejhg.2012.263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/21/2012] [Accepted: 10/26/2012] [Indexed: 11/10/2022] Open
Abstract
Personality traits are complex phenotypes related to psychosomatic health. Individually, various gene finding methods have not achieved much success in finding genetic variants associated with personality traits. We performed a meta-analysis of four genome-wide linkage scans (N=6149 subjects) of five basic personality traits assessed with the NEO Five-Factor Inventory. We compared the significant regions from the meta-analysis of linkage scans with the results of a meta-analysis of genome-wide association studies (GWAS) (N∼17 000). We found significant evidence of linkage of neuroticism to chromosome 3p14 (rs1490265, LOD=4.67) and to chromosome 19q13 (rs628604, LOD=3.55); of extraversion to 14q32 (ATGG002, LOD=3.3); and of agreeableness to 3p25 (rs709160, LOD=3.67) and to two adjacent regions on chromosome 15, including 15q13 (rs970408, LOD=4.07) and 15q14 (rs1055356, LOD=3.52) in the individual scans. In the meta-analysis, we found strong evidence of linkage of extraversion to 4q34, 9q34, 10q24 and 11q22, openness to 2p25, 3q26, 9p21, 11q24, 15q26 and 19q13 and agreeableness to 4q34 and 19p13. Significant evidence of association in the GWAS was detected between openness and rs677035 at 11q24 (P-value=2.6 × 10(-06), KCNJ1). The findings of our linkage meta-analysis and those of the GWAS suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene.
Collapse
Affiliation(s)
- Najaf Amin
- Unit of Genetic Epidemiology, Department of Epidemiology and Biostatistics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
de Moor MHM, Costa PT, Terracciano A, Krueger RF, de Geus EJC, Toshiko T, Penninx BWJH, Esko T, Madden PAF, Derringer J, Amin N, Willemsen G, Hottenga JJ, Distel MA, Uda M, Sanna S, Spinhoven P, Hartman CA, Sullivan P, Realo A, Allik J, Heath AC, Pergadia ML, Agrawal A, Lin P, Grucza R, Nutile T, Ciullo M, Rujescu D, Giegling I, Konte B, Widen E, Cousminer DL, Eriksson JG, Palotie A, Peltonen L, Luciano M, Tenesa A, Davies G, Lopez LM, Hansell NK, Medland SE, Ferrucci L, Schlessinger D, Montgomery GW, Wright MJ, Aulchenko YS, Janssens ACJW, Oostra BA, Metspalu A, Abecasis GR, Deary IJ, Räikkönen K, Bierut LJ, Martin NG, van Duijn CM, Boomsma DI. Meta-analysis of genome-wide association studies for personality. Mol Psychiatry 2012; 17:337-49. [PMID: 21173776 PMCID: PMC3785122 DOI: 10.1038/mp.2010.128] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 11/14/2010] [Accepted: 11/16/2010] [Indexed: 01/22/2023]
Abstract
Personality can be thought of as a set of characteristics that influence people's thoughts, feelings and behavior across a variety of settings. Variation in personality is predictive of many outcomes in life, including mental health. Here we report on a meta-analysis of genome-wide association (GWA) data for personality in 10 discovery samples (17,375 adults) and five in silico replication samples (3294 adults). All participants were of European ancestry. Personality scores for Neuroticism, Extraversion, Openness to Experience, Agreeableness and Conscientiousness were based on the NEO Five-Factor Inventory. Genotype data of ≈ 2.4M single-nucleotide polymorphisms (SNPs; directly typed and imputed using HapMap data) were available. In the discovery samples, classical association analyses were performed under an additive model followed by meta-analysis using the weighted inverse variance method. Results showed genome-wide significance for Openness to Experience near the RASA1 gene on 5q14.3 (rs1477268 and rs2032794, P=2.8 × 10(-8) and 3.1 × 10(-8)) and for Conscientiousness in the brain-expressed KATNAL2 gene on 18q21.1 (rs2576037, P=4.9 × 10(-8)). We further conducted a gene-based test that confirmed the association of KATNAL2 to Conscientiousness. In silico replication did not, however, show significant associations of the top SNPs with Openness and Conscientiousness, although the direction of effect of the KATNAL2 SNP on Conscientiousness was consistent in all replication samples. Larger scale GWA studies and alternative approaches are required for confirmation of KATNAL2 as a novel gene affecting Conscientiousness.
Collapse
Affiliation(s)
- M H M de Moor
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Middeldorp CM, de Moor MHM, McGrath LM, Gordon SD, Blackwood DH, Costa PT, Terracciano A, Krueger RF, de Geus EJC, Nyholt DR, Tanaka T, Esko T, Madden PAF, Derringer J, Amin N, Willemsen G, Hottenga JJ, Distel MA, Uda M, Sanna S, Spinhoven P, Hartman CA, Ripke S, Sullivan PF, Realo A, Allik J, Heath AC, Pergadia ML, Agrawal A, Lin P, Grucza RA, Widen E, Cousminer DL, Eriksson JG, Palotie A, Barnett JH, Lee PH, Luciano M, Tenesa A, Davies G, Lopez LM, Hansell NK, Medland SE, Ferrucci L, Schlessinger D, Montgomery GW, Wright MJ, Aulchenko YS, Janssens ACJW, Oostra BA, Metspalu A, Abecasis GR, Deary IJ, Räikkönen K, Bierut LJ, Martin NG, Wray NR, van Duijn CM, Smoller JW, Penninx BWJH, Boomsma DI. The genetic association between personality and major depression or bipolar disorder. A polygenic score analysis using genome-wide association data. Transl Psychiatry 2011; 1:e50. [PMID: 22833196 PMCID: PMC3309491 DOI: 10.1038/tp.2011.45] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 12/20/2022] Open
Abstract
The relationship between major depressive disorder (MDD) and bipolar disorder (BD) remains controversial. Previous research has reported differences and similarities in risk factors for MDD and BD, such as predisposing personality traits. For example, high neuroticism is related to both disorders, whereas openness to experience is specific for BD. This study examined the genetic association between personality and MDD and BD by applying polygenic scores for neuroticism, extraversion, openness to experience, agreeableness and conscientiousness to both disorders. Polygenic scores reflect the weighted sum of multiple single-nucleotide polymorphism alleles associated with the trait for an individual and were based on a meta-analysis of genome-wide association studies for personality traits including 13,835 subjects. Polygenic scores were tested for MDD in the combined Genetic Association Information Network (GAIN-MDD) and MDD2000+ samples (N=8921) and for BD in the combined Systematic Treatment Enhancement Program for Bipolar Disorder and Wellcome Trust Case-Control Consortium samples (N=6329) using logistic regression analyses. At the phenotypic level, personality dimensions were associated with MDD and BD. Polygenic neuroticism scores were significantly positively associated with MDD, whereas polygenic extraversion scores were significantly positively associated with BD. The explained variance of MDD and BD, ∼0.1%, was highly comparable to the variance explained by the polygenic personality scores in the corresponding personality traits themselves (between 0.1 and 0.4%). This indicates that the proportions of variance explained in mood disorders are at the upper limit of what could have been expected. This study suggests shared genetic risk factors for neuroticism and MDD on the one hand and for extraversion and BD on the other.
Collapse
Affiliation(s)
- C M Middeldorp
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pergadia ML, Glowinski AL, Wray NR, Agrawal A, Saccone SF, Loukola A, Broms U, Korhonen T, Penninx BW, Grant JD, Nelson EC, Henders AK, Schrage AJ, Chou YL, Keskitalo-Vuokko K, Zhu Q, Gordon SD, Vink JM, de Geus EJ, MacGregor S, Liu JZ, Willemsen G, Medland SE, Boomsma DI, Montgomery GW, Rice JP, Goate AM, Heath AC, Kaprio J, Martin NG, Madden PA. A 3p26-3p25 genetic linkage finding for DSM-IV major depression in heavy smoking families. Am J Psychiatry 2011; 168:848-52. [PMID: 21572167 PMCID: PMC3433250 DOI: 10.1176/appi.ajp.2011.10091319] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The authors tested for genetic linkage of DSM-IV-diagnosed major depressive disorder in families that were ascertained for cigarette smoking. METHOD Within a study that targeted families characterized by a history of smoking, analyses derived a subset of 91 Australian families with two or more offspring with a history of DSM-IV major depressive disorder (affected sibling pairs, N=187) and 25 Finnish families (affected sibling pairs, N=33). Within this affected sibling pairs design, the authors conducted nonparametric linkage analysis. RESULTS In the Australian heavy smoking families, the authors found a genome-wide significant multipoint LOD score of 4.14 for major depressive disorder on chromosome 3 at 24.9 cM (3p26-3p25). CONCLUSIONS Genome-wide significant linkage was detected for major depressive disorder on chromosome 3p in a sample ascertained for smoking. A linkage peak at this location was also observed in an independent study of major depressive disorder.
Collapse
Affiliation(s)
- Michele L. Pergadia
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | - Anne L. Glowinski
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | - Naomi R. Wray
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | - Scott F. Saccone
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | - Anu Loukola
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland,Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Ulla Broms
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland,Department of Mental Health and Substance Abuse Services, National Institute of Health and Welfare, Helsinki, Finland
| | - Tellervo Korhonen
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland,Department of Mental Health and Substance Abuse Services, National Institute of Health and Welfare, Helsinki, Finland
| | - Brenda W.J.H. Penninx
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, Netherlands
| | - Julia D. Grant
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | - Elliot C. Nelson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | | | - Andrew J. Schrage
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | - Yi-Ling Chou
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | | | - Qin Zhu
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| | - Scott D. Gordon
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Jacqueline M. Vink
- Department of Biological Psychology, VU University Amsterdam, Amsterdam Netherlands
| | - Eco J.C. de Geus
- Department of Biological Psychology, VU University Amsterdam, Amsterdam Netherlands
| | | | - Jimmy Z. Liu
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam Netherlands
| | | | - Dorret I. Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam Netherlands
| | | | - John P. Rice
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A,Department of Genetics, Washington University School of Medicine, Saint Louis, U.S.A
| | - Alison M. Goate
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A,Department of Genetics, Washington University School of Medicine, Saint Louis, U.S.A
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A,Department of Genetics, Washington University School of Medicine, Saint Louis, U.S.A
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland,Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland,Department of Mental Health and Substance Abuse Services, National Institute of Health and Welfare, Helsinki, Finland
| | | | - Pamela A.F. Madden
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, U.S.A
| |
Collapse
|
15
|
Lori A, Tang Y, O'Malley S, Picciotto MR, Wu R, Conneely KN, Cubells JF. The galanin receptor 1 gene associates with tobacco craving in smokers seeking cessation treatment. Neuropsychopharmacology 2011; 36:1412-20. [PMID: 21430647 PMCID: PMC3096810 DOI: 10.1038/npp.2011.25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/19/2011] [Accepted: 02/02/2011] [Indexed: 01/20/2023]
Abstract
Craving for tobacco is a major challenge for people with nicotine dependence (ND) who try to quit smoking. Galanin (GAL) and its receptors (GALRs) can alter addiction-related behaviors and are therefore good candidates for modulators of behavioral parameters associated with smoking. We performed a genetic association study in 486 subjects (432 European American, EA) recruited for smoking cessation trials. Twenty-six candidate genes for ND-related phenotypes were selected based on the literature. Subjects were assessed using the Minnesota Withdrawal Scale (MWS), which included a specific item for craving, the Fagerström Scale of Nicotine Dependence (FTND), and other ND-related instruments. One single-nucleotide polymorphism (SNP) in GALR1, rs2717162, significantly associated with severity of craving in EA samples (p=6.48 × 10(-6)) and in the combined sample (p=9.23 × 10(-6)). Individuals with TT and TC genotypes had significantly higher craving scores than CC subjects. We also observed that SNPs in the CHRNA5 locus, rs16969968 and rs684513, which have been associated with ND-related phenotypes in previous studies, were nominally associated with FTND scores, although these results did not meet Bonferroni-adjusted criteria for experiment-wide significance. Our findings suggest that variation at GALR1 associates with differences in the severity of past craving for tobacco among smokers motivated to quit. Taken together with preclinical evidence, these results, if replicated, suggest that GAL and GALRs may be useful therapeutic targets for the pharmacological treatment of ND. Our results also confirm previously reported associations between variation at CHRNA5 and ND.
Collapse
Affiliation(s)
- Adriana Lori
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yilang Tang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie O'Malley
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ran Wu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F Cubells
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Pergadia ML, Agrawal A, Heath AC, Martin NG, Bucholz KK, Madden PAF. Nicotine withdrawal symptoms in adolescent and adult twins. Twin Res Hum Genet 2011; 13:359-69. [PMID: 20707706 DOI: 10.1375/twin.13.4.359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined the variation and heritability of DSM-IV nicotine withdrawal (NW) in adult and adolescent male and female twin cigarette smokers (who reported smoking 100 or more cigarettes lifetime). Telephone diagnostic interviews were completed with 3,112 Australian adult male and female smokers (53% women; age: 24-36) and 702 Missouri adolescent male and female smokers (59% girls; age: 15-21). No gender or cohort differences emerged in rates of meeting criteria for NW (44%). Latent class analyses found that NW symptoms were best conceptualized as a severity continuum (three levels in adults and two levels in adolescents). Across all groups, increasing NW severity was associated with difficulty quitting, impairment following cessation, heavy smoking, depression, anxiety, conduct disorder and problems with alcohol use. NW was also associated with seeking smoking cessation treatment and with smoking persistence in adults. The latent class structure of NW was equally heritable across adult and adolescent smokers with additive genetic influences accounting for 49% of the variance and the remaining 51% of variance accounted for by unique environmental influences. Overall, findings suggest remarkable similarity in the pattern and heritability of NW across adult and adolescent smokers, and highlight the important role of NW in psychiatric comorbidity and the process of smoking cessation across both age groups.
Collapse
Affiliation(s)
- Michele L Pergadia
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Lind PA, Macgregor S, Vink JM, Pergadia ML, Hansell NK, de Moor MHM, Smit AB, Hottenga JJ, Richter MM, Heath AC, Martin NG, Willemsen G, de Geus EJC, Vogelzangs N, Penninx BW, Whitfield JB, Montgomery GW, Boomsma DI, Madden PAF. A genomewide association study of nicotine and alcohol dependence in Australian and Dutch populations. Twin Res Hum Genet 2010; 13:10-29. [PMID: 20158304 DOI: 10.1375/twin.13.1.10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persistent tobacco use and excessive alcohol consumption are major public health concerns worldwide. Both alcohol and nicotine dependence (AD, ND) are genetically influenced complex disorders that exhibit a high degree of comorbidity. To identify gene variants contributing to one or both of these addictions, we first conducted a pooling-based genomewide association study (GWAS) in an Australian population, using Illumina Infinium 1M arrays. Allele frequency differences were compared between pooled DNA from case and control groups for: (1) AD, 1224 cases and 1162 controls; (2) ND, 1273 cases and 1113 controls; and (3) comorbid AD and ND, 599 cases and 488 controls. Secondly, we carried out a GWAS in independent samples from the Netherlands for AD and for ND. Thirdly, we performed a meta-analysis of the 10,000 most significant AD- and ND-related SNPs from the Australian and Dutch samples. In the Australian GWAS, one SNP achieved genomewide significance (p < 5 x 10(-8)) for ND (rs964170 in ARHGAP10 on chromosome 4, p = 4.43 x 10(-8)) and three others for comorbid AD/ND (rs7530302 near MARK1 on chromosome 1 (p = 1.90 x 10(-9)), rs1784300 near DDX6 on chromosome 11 (p = 2.60 x 10(-9)) and rs12882384 in KIAA1409 on chromosome 14 (p = 4.86 x 10(-8))). None of the SNPs achieved genomewide significance in the Australian/Dutch meta-analysis, but a gene network diagram based on the top-results revealed overrepresentation of genes coding for ion-channels and cell adhesion molecules. Further studies will be required before the detailed causes of comorbidity between AD and ND are understood.
Collapse
Affiliation(s)
- Penelope A Lind
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A Genomewide Association Study of Nicotine and Alcohol Dependence in Australian and Dutch Populations. Twin Res Hum Genet 2010. [DOI: 10.1017/s183242740002003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Persistent tobacco use and excessive alcohol consumption are major public health concerns worldwide. Both alcohol and nicotine dependence (AD, ND) are genetically influenced complex disorders that exhibit a high degree of comorbidity. To identify gene variants contributing to one or both of these addictions, we first conducted a pooling-based genomewide association study (GWAS) in an Australian population, using Illumina Infinium 1M arrays. Allele frequency differences were compared between pooled DNA from case and control groups for: (1) AD, 1224 cases and 1162 controls; (2) ND, 1273 cases and 1113 controls; and (3) comorbid AD and ND, 599 cases and 488 controls. Secondly, we carried out a GWAS in independent samples from the Netherlands for AD and for ND. Thirdly, we performed a meta-analysis of the 10, 000 most significant AD- and ND-related SNPs from the Australian and Dutch samples. In the Australian GWAS, one SNP achieved genomewide significance (p < 5 x 10-8) for ND (rs964170 in ARHGAPlOon chromosome 4, p = 4.43 x 10”8) and three others for comorbid AD/ND (rs7530302 near MARK1 on chromosome 1 (p = 1.90 x 10-9), rs1784300 near DDX6 on chromosome 11 (p = 2.60 x 10-9) and rs12882384 in KIAA1409 on chromosome 14 (p = 4.86 x 10-8)). None of the SNPs achieved genomewide significance in the Australian/Dutch meta-analysis, but a gene network diagram based on the top-results revealed overrepre-sentation of genes coding for ion-channels and cell adhesion molecules. Further studies will be requirec before the detailed causes of comorbidity between AC and ND are understood.
Collapse
|
19
|
Hardin J, He Y, Javitz HS, Wessel J, Krasnow RE, Tildesley E, Hops H, Swan GE, Bergen AW. Nicotine withdrawal sensitivity, linkage to chr6q26, and association of OPRM1 SNPs in the SMOking in FAMilies (SMOFAM) sample. Cancer Epidemiol Biomarkers Prev 2009; 18:3399-406. [PMID: 19959688 PMCID: PMC3536862 DOI: 10.1158/1055-9965.epi-09-0960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nicotine withdrawal symptoms are related to smoking cessation. A Rasch model has been used to develop a unidimensional sensitivity score representing multiple correlated measures of nicotine withdrawal. A previous autosome-wide screen identified a nonparametric linkage (NPL) log-likelihood ratio (LOD) score of 2.7 on chromosome 6q26 for the sum of nine withdrawal symptoms. METHODS The objectives of these analyses were to (a) assess the influence of nicotine withdrawal sensitivity on relapse, (b) conduct autosome-wide NPL analysis of nicotine withdrawal sensitivity among 158 pedigrees with 432 individuals with microsatellite genotypes and nicotine withdrawal scores, and (c) explore family-based association of single nucleotide polymorphism (SNP) at the mu opioid receptor candidate gene (OPRM1) with nicotine withdrawal sensitivity in 172 nuclear pedigrees with 419 individuals with both SNP genotypes and nicotine withdrawal scores. RESULTS An increased risk for relapse was associated with nicotine withdrawal sensitivity score (odds ratio, 1.25; 95% confidence interval, 1.10-1.42). A maximal NPL LOD score of 3.15, suggestive of significant linkage, was identified at chr6q26 for nicotine withdrawal sensitivity. Evaluation of 18 OPRM1 SNPs via the family-based association test with the nicotine withdrawal sensitivity score identified eight tagging SNPs with global P values <0.05 and false discovery rate Q values <0.06. CONCLUSION An increased risk of relapse, suggestive linkage at chr6q26, and nominally significant association with multiple OPRM1 SNPs were found with Rasch-modeled nicotine withdrawal sensitivity scores in a multiplex smoking pedigree sample. Future studies should attempt to replicate these findings and investigate the relationship between nicotine withdrawal symptoms and variation at OPRM1.
Collapse
|