1
|
van Gils AM, Rhodius‐Meester HFM, Leeuwis AE, Handgraaf D, Bakker C, Peetoom K, Bouwman FH, Pijnenburg YAL, Papma JM, Hoogendoorn T, Schoonenboom N, van Strien A, Verwey NA, Köhler S, de Vugt ME, van der Flier WM. Young-onset dementia in memory clinics in the Netherlands: Study design and description of PRECODE-GP. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12471. [PMID: 37609004 PMCID: PMC10441283 DOI: 10.1002/dad2.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
The disease trajectory and healthcare requirements of patients with young-onset dementia (YOD) differ from those of older patients. Accurate data about YOD is crucial to improve diagnosis and optimize care. PRECODE-GP aims to set up a prospective national database of patients with YOD to gain insight into the occurrence and characteristics of patients with YOD in memory clinics in the Netherlands. The national database includes data from dementia patients aged <70 years at diagnosis, collected by local memory clinics (MCs). Data included demographic information, clinical variables, and (etiological) diagnoses. Between July 2019 and December 2022, 781 patients with a mean age of 62±6y at diagnosis (range 37 to 69y) were included from 39 MCs. Most (n = 547,70%) were diagnosed with dementia due to Alzheimer's disease (AD). Patients with Frontotemporal lobe dementia (FTD, n = 87, 11%) were youngest (61±6.0y). Over half (55%) of patients were experiencing symptoms for ≥2 years. We initiated a Dutch national YOD database to improve diagnosis and care for this underrepresented and vulnerable patient group. The database provides a basis for future in-depth studies on YOD.
Collapse
Affiliation(s)
- Aniek M. van Gils
- Alzheimer Center AmsterdamDepartment of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Hanneke F. M. Rhodius‐Meester
- Alzheimer Center AmsterdamDepartment of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
- Department of Internal MedicineGeriatric Medicine SectionAmsterdam Cardiovascular Sciences InstituteVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Geriatric MedicineThe Memory ClinicOslo University HospitalOsloNorway
| | - Anna E. Leeuwis
- Alzheimer Center AmsterdamDepartment of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Dédé Handgraaf
- Alzheimer Center AmsterdamDepartment of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Christian Bakker
- Department of Primary and Community CareRadboud University Medical CenterNijmegenThe Netherlands
- Alzheimer CenterRadboud UMCNijmegenThe Netherlands
- Center for Specialized Geriatric CareGroenhuysenRoosendaalThe Netherlands
| | - Kirsten Peetoom
- Department of Psychiatry and Neuropsychology/Alzheimer Center LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Femke H. Bouwman
- Alzheimer Center AmsterdamDepartment of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Janne M. Papma
- Department of Neurology and Alzheimer Center Erasmus MCErasmus MC University Medical CenterRotterdamThe Netherlands
| | | | - Niki Schoonenboom
- Department of Clinical Geriatrics Spaarne GasthuisHaarlemThe Netherlands
| | - Astrid van Strien
- Department of Geriatric MedicineJeroen Bosch Hospital‘s‐HertogenboschThe Netherlands
| | - Nicolaas A. Verwey
- Department of NeurologyMedical Center LeeuwardenLeeuwardenThe Netherlands
| | - Sebastian Köhler
- Department of Psychiatry and Neuropsychology/Alzheimer Center LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Marjolein E. de Vugt
- Department of Psychiatry and Neuropsychology/Alzheimer Center LimburgSchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center AmsterdamDepartment of NeurologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
- Department of Epidemiology and Data ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
CURVED MULTIFORMAT IMAGING OF STRUCTURAL MRI AS A BIOMARKER FOR PROFILING OF VARIOUS DEMENTIA - AN ALGORITHMIC APPROACH WITH MR/PET. Asian J Psychiatr 2022; 73:103094. [PMID: 35500471 DOI: 10.1016/j.ajp.2022.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Accepted: 04/02/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Dementia is one of the most common clinical entities for which neuroimaging is done for diagnosis and characterization of the sub-types. OBJECTIVE Advanced neuroimaging modalities like MR-PET have added to the armamentarium of the neuroradiologists for the diagnosis of specific types of dementia syndromes. However, advanced molecular imaging is expensive and is not widely available particularly in underdeveloped countries. Structural imaging with MRI in addition to the clinical work up remains the most useful approach to the diagnosis of dementia in our setup. MATERIAL AND METHODS We describe a simple technique of curved multiplanar reconstruction of brain images with the use of a simple reconstruction software which can help in recognition of pattern of atrophy in dementias and thus improve the diagnostic accuracy of structural MRI. RESULTS Using this approach of pattern recognition, we suggest a simplified algorithm for diagnosis of sub-types of dementia. CONCLUSIONS In our study, we applied this technique for demonstration of pattern of atrophy which correlated with metabolic changes on PET in a variety of dementia cases using simultaneous MR-PET imaging and may act as a low cost and reliable biomarker to profile dementia subtypes. To the best of our knowledge this is the first study to show the utility of curved multiplanar reconstruction in dementias.
Collapse
|
3
|
Crook A, Jacobs C, Newton-John T, Richardson E, McEwen A. Patient and Relative Experiences and Decision-making About Genetic Testing and Counseling for Familial ALS and FTD: A Systematic Scoping Review. Alzheimer Dis Assoc Disord 2021; 35:374-385. [PMID: 34054018 DOI: 10.1097/wad.0000000000000458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
Genetic testing and counseling is an emerging part of care for patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and their families. This scoping review aimed to map patients' and relatives' experiences of genetic testing and counseling for familial ALS and FTD and the factors influencing their decision to proceed with testing or counseling. Informed by the Joanna Briggs Institute methodology, 5 databases were systematically searched. Thirty studies from 39 references were included. A descriptive numerical summary analysis and narrative synthesis was conducted. Mostly positive diagnostic testing experiences were reported, but issues arose due to progressive disease and discordant results. Predictive testing impacted at-risk relatives, regardless of the result received, and psychosocial sequelae ranged from relief to guilt, worry or contemplating suicide. Four reproductive testing experiences were reported. Personal, familial and practical factors, and the lived experience of disease, informed decision-making. Greater uncertainty and complexity may be faced in familial ALS/FTD than in other late-onset neurodegenerative diseases due to clinical and genetic heterogeneity, and testing limitations. Genetic counseling models of care should consider this difference to ensure that individuals with, or at risk of, ALS/FTD are effectively managed. Implications for research and practice are discussed.
Collapse
Affiliation(s)
- Ashley Crook
- Graduate School of Health, University of Technology Sydney, Chippendale
- Department of Biomedical Science, Centre for MND Research
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chris Jacobs
- Graduate School of Health, University of Technology Sydney, Chippendale
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Chippendale
| | - Ebony Richardson
- Graduate School of Health, University of Technology Sydney, Chippendale
| | - Alison McEwen
- Graduate School of Health, University of Technology Sydney, Chippendale
| |
Collapse
|
4
|
Dehghani N, Bras J, Guerreiro R. How understudied populations have contributed to our understanding of Alzheimer's disease genetics. Brain 2021; 144:1067-1081. [PMID: 33889936 DOI: 10.1093/brain/awab028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The majority of genome-wide association studies have been conducted using samples with a broadly European genetic background. As a field, we acknowledge this limitation and the need to increase the diversity of populations studied. A major challenge when designing and conducting such studies is to assimilate large samples sizes so that we attain enough statistical power to detect variants associated with disease, particularly when trying to identify variants with low and rare minor allele frequencies. In this review, we aimed to illustrate the benefits to genetic characterization of Alzheimer's disease, in researching currently understudied populations. This is important for both fair representation of world populations and the translatability of findings. To that end, we conducted a literature search to understand the contributions of studies, on different populations, to Alzheimer's disease genetics. Using both PubMed and Alzforum Mutation Database, we systematically quantified the number of studies reporting variants in known disease-causing genes, in a worldwide manner, and discuss the contributions of research in understudied populations to the identification of novel genetic factors in this disease. Additionally, we compared the effects of genome-wide significant single nucleotide polymorphisms across populations by focusing on loci that show different association profiles between populations (a key example being APOE). Reports of variants in APP, PSEN1 and PSEN2 can initially determine whether patients from a country have been studied for Alzheimer's disease genetics. Most genome-wide significant associations in non-Hispanic white genome-wide association studies do not reach genome-wide significance in such studies of other populations, with some suggesting an opposite effect direction; this is likely due to much smaller sample sizes attained. There are, however, genome-wide significant associations first identified in understudied populations which have yet to be replicated. Familial studies in understudied populations have identified rare, high effect variants, which have been replicated in other populations. This work functions to both highlight how understudied populations have furthered our understanding of Alzheimer's disease genetics, and to help us gauge our progress in understanding the genetic architecture of this disease in all populations.
Collapse
Affiliation(s)
- Nadia Dehghani
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
5
|
Boeve BF, Rosen H. Clinical and Neuroimaging Aspects of Familial Frontotemporal Lobar Degeneration Associated with MAPT and GRN Mutations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:77-92. [PMID: 33433870 DOI: 10.1007/978-3-030-51140-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Numerous kindreds with familial frontotemporal lobar degeneration have been linked to mutations in microtubule-associated protein tau (MAPT) or progranulin (GRN) genes. While there are many similarities in the clinical manifestations and associated neuroimaging findings, there are also distinct differences. In this review, we compare and contrast the demographic/inheritance characteristics, histopathology, pathophysiology, clinical aspects, and key neuroimaging findings between those with MAPT and GRN mutations.
Collapse
Affiliation(s)
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Mutational analysis in familial Alzheimer's disease of Han Chinese in Taiwan with a predominant mutation PSEN1 p.Met146Ile. Sci Rep 2020; 10:19769. [PMID: 33188256 PMCID: PMC7666133 DOI: 10.1038/s41598-020-76794-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in PSEN1, PSEN2, or APP genes are known to be causative for autosomal dominant Alzheimer’s disease (ADAD). While more than 400 mutations were reported worldwide, predominantly PSEN1, over 40 mutations have been reported in Han Chinese and were associated with earlier onset and more affected family members. Between 2002 and 2018, 77 patients in the neurological clinic of Taipei Veterans General Hospital with a history suggestive of ADAD were referred for mutational analysis. We retrospectively collected demographics, initial symptoms, neurological features and inheritance. We identified 16 patients with PSEN1 and 1 with APP mutation. Among the mutations identified, PSEN1 p.Pro117Leu, p.Met146Ile, p.Gly206Asp, p.Gly209Glu, p.Glu280Lys and p.Leu286Val and APP p.Asp678His were known pathogenic mutations; PSEN1 p.His131Arg and p.Arg157Ser were classified as likely pathogenic and variance of unknown significance respectively. The mean age at onset was 46.2 ± 6.2 years in patients with mutation found. PSEN1 p.Met146Ile, occurred in 56.2% (9/16) of patients with PSEN1 mutations, was the most frequent mutation in the cohort. The additional neurological features occurring in 9 PSEN1 p.Met146Ile index patients were similar with the literature. We found patients with genetic diagnoses were more likely to have positive family history, younger age at onset and less brain white matter hyperintensity.
Collapse
|
7
|
Guerreiro R, Gibbons E, Tábuas-Pereira M, Kun-Rodrigues C, Santo GC, Bras J. Genetic architecture of common non-Alzheimer's disease dementias. Neurobiol Dis 2020; 142:104946. [PMID: 32439597 PMCID: PMC8207829 DOI: 10.1016/j.nbd.2020.104946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Frontotemporal dementia (FTD), dementia with Lewy bodies (DLB) and vascular dementia (VaD) are the most common forms of dementia after Alzheimer's disease (AD). The heterogeneity of these disorders and/or the clinical overlap with other diseases hinder the study of their genetic components. Even though Mendelian dementias are rare, the study of these forms of disease can have a significant impact in the lives of patients and families and have successfully brought to the fore many of the genes currently known to be involved in FTD and VaD, starting to give us a glimpse of the molecular mechanisms underlying these phenotypes. More recently, genome-wide association studies have also pointed to disease risk-associated loci. This has been particularly important for DLB where familial forms of disease are very rarely described. In this review we systematically describe the Mendelian and risk genes involved in these non-AD dementias in an effort to contribute to a better understanding of their genetic architecture, find differences and commonalities between different dementia phenotypes, and uncover areas that would benefit from more intense research endeavors.
Collapse
Affiliation(s)
- Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Elizabeth Gibbons
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Gustavo C Santo
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA; Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
8
|
Caswell C, McMillan CT, Xie SX, Van Deerlin VM, Suh E, Lee EB, Trojanowski JQ, Lee VMY, Irwin DJ, Grossman M, Massimo LM. Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology 2019; 93:e1707-e1714. [PMID: 31537715 DOI: 10.1212/wnl.0000000000008387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determine autosomal dominant genetic predictors of survival in individuals with behavioral variant frontotemporal degeneration (bvFTD). METHODS A retrospective chart review of 174 cases with a clinical phenotype of bvFTD but no associated elementary neurologic features was performed, with diagnosis either autopsy-confirmed (n = 57) or supported by CSF evidence of non-Alzheimer pathology (n = 117). Genetic analysis of the 3 most common genes with pathogenic autosomal dominant mutations associated with frontotemporal degeneration was performed in all patients, which identified cases with C9orf72 expansion (n = 28), progranulin (GRN) mutation (n = 12), and microtubule-associated protein tau (MAPT) mutation (n = 10). Cox proportional hazards regressions were used to test for associations between survival and mutation status, sex, age at symptom onset, and education. RESULTS Across all patients with bvFTD, the presence of a disease-associated pathogenic mutation was associated with shortened survival (hazard ratio [HR] 2.164, 95% confidence interval [CI] 1.391, 3.368). In separate models, a GRN mutation (HR 2.423, 95% CI 1.237, 4.744), MAPT mutation (HR 8.056, 95% CI 2.938, 22.092), and C9orf72 expansion (HR 1.832, 95% CI 1.034, 3.244) were each individually associated with shorter survival relative to sporadic bvFTD. A mutation on the MAPT gene results in an earlier age at onset than a C9orf72 expansion or mutation on the GRN gene (p = 0.016). CONCLUSIONS Our findings suggest that autosomal dominantly inherited mutations, modulated by age at symptom onset, associate with shorter survival among patients with bvFTD. We suggest that clinical trials and clinical management should consider mutation status and age at onset when evaluating disease progression.
Collapse
Affiliation(s)
- Carrie Caswell
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Corey T McMillan
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sharon X Xie
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivianna M Van Deerlin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - EunRan Suh
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Edward B Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John Q Trojanowski
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Virginia M-Y Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lauren M Massimo
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
9
|
Crook A, McEwen A, Fifita JA, Zhang K, Kwok JB, Halliday G, Blair IP, Rowe DB. The C9orf72 hexanucleotide repeat expansion presents a challenge for testing laboratories and genetic counseling. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:310-316. [PMID: 30907153 DOI: 10.1080/21678421.2019.1588904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C9orf72 hexanucleotide repeat expansions are the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Genetic testing for C9orf72 expansions in patients with ALS and/or FTD and their relatives has become increasingly available since hexanucleotide repeat expansions were first reported in 2011. The repeat number is highly variable and the threshold at which repeat size leads to neurodegeneration remains unknown. We present the case of an ALS patient who underwent genetic testing through our Motor Neurone Disease Clinic. We highlight current limitations to analysing and interpreting C9orf72 expansion test results and describe how this resulted in discordant reports of pathogenicity between testing laboratories that confounded the genetic counselling process. We conclude that patients with ALS or FTD and their at-risk family members, need to be adequately counselled about the limitations of current knowledge to ensure they are making informed decisions about genetic testing for C9orf72. Greater collaboration between clinicians, testing laboratories and researchers is required to ensure risks to patients and their families are minimised.
Collapse
Affiliation(s)
- Ashley Crook
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,c Graduate School of Health , University of Technology Sydney , Ultimo , Australia
| | - Alison McEwen
- c Graduate School of Health , University of Technology Sydney , Ultimo , Australia
| | - Jennifer A Fifita
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Katharine Zhang
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - John B Kwok
- d Central Clinical School and Brain and Mind Centre , The University of Sydney , Sydney , Australia.,e School of Medical Sciences , University of New South Wales , Sydney , Australia
| | - Glenda Halliday
- d Central Clinical School and Brain and Mind Centre , The University of Sydney , Sydney , Australia
| | - Ian P Blair
- b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Dominic B Rowe
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Centre for MND Research, Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| |
Collapse
|
10
|
Abstract
The past decade has seen tremendous efforts in biomarker discovery and validation for neurodegenerative diseases. The source and type of biomarkers has continued to grow for central nervous system diseases, from biofluid-based biomarkers (blood or cerebrospinal fluid (CSF)), to nucleic acids, tissue, and imaging. While DNA remains a predominant biomarker used to identify familial forms of neurodegenerative diseases, various types of RNA have more recently been linked to familial and sporadic forms of neurodegenerative diseases during the past few years. Imaging approaches continue to evolve and are making major contributions to target engagement and early diagnostic biomarkers. Incorporation of biomarkers into drug development and clinical trials for neurodegenerative diseases promises to aid in the development and demonstration of target engagement and drug efficacy for neurologic disorders. This review will focus on recent advancements in developing biomarkers for clinical utility in Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
| | - Robert Bowser
- Iron Horse Diagnostics, Inc., Scottsdale, AZ, 85255, USA.
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
11
|
Bartoletti-Stella A, Baiardi S, Stanzani-Maserati M, Piras S, Caffarra P, Raggi A, Pantieri R, Baldassari S, Caporali L, Abu-Rumeileh S, Linarello S, Liguori R, Parchi P, Capellari S. Identification of rare genetic variants in Italian patients with dementia by targeted gene sequencing. Neurobiol Aging 2018. [DOI: 10.1016/j.neurobiolaging.2018.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Jones B, Gage H, Bakker C, Barrios H, Boucault S, Mayer J, Metcalfe A, Millenaar J, Parker W, Orrung Wallin A. Availability of information on young onset dementia for patients and carers in six European countries. PATIENT EDUCATION AND COUNSELING 2018; 101:159-165. [PMID: 28843442 DOI: 10.1016/j.pec.2017.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/04/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To identify information available in six European countries (England, France, Germany, Netherlands, Portugal, Sweden) that addresses the specific needs of people with young onset dementia (YOD) and their carers, and identify gaps. METHODS Search of websites of organisations with potential interest in dementia. Narrative synthesis and comparative analysis. RESULTS 21 sources of information were identified (Netherlands 6, England 6, France 3, Germany 2, Portugal 2, Sweden 2); 11 were from voluntary sector organisations. Sources dedicated to YOD were limited (4 websites, 4 books); all other YOD information was sub-entries in generic dementia sources, difficult to locate and with limited coverage of relevant topics. Gaps related to implications of living with YOD in Germany, Portugal and Sweden. CONCLUSION Availability of information varies among countries, some having no dedicated source and incomplete coverage of issues of importance to YOD. PRACTICAL IMPLICATIONS Information is an important means of supporting carers; their needs change as the condition progresses. A comprehensive resource collating key information is needed so that the issues that differentiate the specific needs of people living with YOD from those of people with dementia in older age are available and easily located.
Collapse
Affiliation(s)
- Bridget Jones
- Surrey Health Economics Centre, School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH England, UK.
| | - Heather Gage
- Surrey Health Economics Centre, School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH England, UK.
| | - Christian Bakker
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Helena Barrios
- Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Portugal.
| | - Sarah Boucault
- Université Pierre et Marie Curie, Hôpital Pitié Salpêtrière, Paris, France.
| | - Johannes Mayer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Anna Metcalfe
- Université Pierre et Marie Curie, Hôpital Pitié Salpêtrière, Paris, France.
| | - Joany Millenaar
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Wendy Parker
- Surrey Health Economics Centre, School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH England, UK.
| | - Anneli Orrung Wallin
- Department of Health and Society, Kristianstad University, Kristianstad, Sweden.
| |
Collapse
|
13
|
Crook A, Williams K, Adams L, Blair I, Rowe DB. Predictive genetic testing for amyotrophic lateral sclerosis and frontotemporal dementia: genetic counselling considerations. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:475-485. [PMID: 28585888 DOI: 10.1080/21678421.2017.1332079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Once a gene mutation that is causal of amyotrophic lateral sclerosis (ALS) and/or frontotemporal dementia (FTD) is identified in a family, relatives may decide to undergo predictive genetic testing to determine whether they are at risk of developing disease. Recent advances in gene discovery have led to a pressing need to better understand the implications of predictive genetic testing. Here we review the uptake of genetic counselling, predictive and reproductive testing, and the factors that impact the decision to undergo testing, for consideration in clinical practice. The literature suggests that the factors impacting the decision to undergo testing are complex due to the nature of these diseases, absence of available preventative medical treatment and variable age of onset in mutation carriers. Gaining further insight into the decision-making process and the impact of testing is critical as we seek to develop best-practice guidelines for predictive testing for familial ALS and FTD.
Collapse
Affiliation(s)
- Ashley Crook
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , New South Wales , Australia and
| | - Kelly Williams
- b Centre for MND Research , Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , New South Wales , Australia
| | - Lorel Adams
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , New South Wales , Australia and
| | - Ian Blair
- b Centre for MND Research , Department of Biomedical Science, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , New South Wales , Australia
| | - Dominic B Rowe
- a Department of Clinical Medicine, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , New South Wales , Australia and
| |
Collapse
|
14
|
Nizetic D, Chen CL, Hong W, Koo EH. Inter-Dependent Mechanisms Behind Cognitive Dysfunction, Vascular Biology and Alzheimer's Dementia in Down Syndrome: Multi-Faceted Roles of APP. Front Behav Neurosci 2015; 9:299. [PMID: 26648852 PMCID: PMC4664698 DOI: 10.3389/fnbeh.2015.00299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/27/2015] [Indexed: 01/05/2023] Open
Abstract
People with Down syndrome (DS) virtually all develop intellectual disability (ID) of varying degree of severity, and also have a high risk of early Alzheimer's disease (AD). ID prior to the onset of dementia, and its relationship to the onset of dementia in DS is a complex phenomenon influenced by many factors, and scarcely understood. Unraveling the causative factors and modulators of these processes remains a challenge, with potential to be informative for both ID and AD, for the development of early biomarkers and/or therapeutic approaches. We review the potential relative and inter-connected roles of the chromosome 21 gene for amyloid precursor protein (APP), in both pathological conditions. Rare non-DS people with duplication of APP (dupAPP) get familial early onset AD (FEOAD) with virtually 100% penetrance and prominent cerebrovascular pathology, but don't suffer from ID before dementia onset. All of these features appear to be radically different in DS. On the other hand, rare individuals with partial trisomy 21 (T21) (with APP, but not DS-critical region in trisomy) have been described having ID. Likewise, partial T21 DS (without APP trisomy) show a range of ID, but no AD pathology. We review the multi-faceted roles of APP that might affect cognitive functioning. Given the fact that both Aβ secretion and synaptic maturation/plasticity are dependent on neuronal activity, we explore how this conflicting inter-dependency might affect cognitive pathogenesis in a dynamic way in DS, throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore Singapore ; The LonDownS Consortium, Wellcome Trust London, UK ; The Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London London, UK
| | - Christopher L Chen
- Department of Psychological Medicine and Memory Aging and Cognition Centre, National University Health System, Singapore Singapore ; Department of Pharmacology, National University of Singapore, Singapore Singapore
| | - Wanjin Hong
- Agency for Science, Technology and Research (AStar), Institute of Molecular Cell Biology, Singapore Singapore
| | - Edward H Koo
- Departments of Medicine and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Singapore ; Department of Neurosciences, University of California, San Diego San Diego, CA, USA
| |
Collapse
|
15
|
Basiri K, Ansari B, Meamar R. Frontotemporal dementia parkinsonism: Clinical findings in a large Iranian family. Adv Biomed Res 2015; 4:37. [PMID: 25789263 PMCID: PMC4358030 DOI: 10.4103/2277-9175.151242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/01/2014] [Indexed: 11/04/2022] Open
Abstract
Frontotemporal dementia (FTD) is a group of neurodegenerative disorders characterized by atrophy of the frontal and temporal lobes. Clinical features suggestive of FTD include pre-senile onset before the age of 65, behavioral changes, social and interpersonal disinhibition, fluent and nonfluent aphasia, and loss of insight. FTD and parkinsonism linked to chromosome 17 (FTDP-17) was defined during the International Consensus Conference in Ann Arbor, Michigan in 1996. FTDP-17 is an autosomally dominant inherited condition. Most genotypic alterations do not correlate with clinical phenotypes. However, mutations affecting exon 10 splicing are associated with parkinsonism. In the present study, a male case with FTDP who presented with insidious onset of speech difficulty at a young age that was associated with signs of parkinsonism and a positive family history of FTD with MAPT gene mutation at exon 13 has been reported.
Collapse
Affiliation(s)
- Keivan Basiri
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
16
|
Cotman SL, Karaa A, Staropoli JF, Sims KB. Neuronal ceroid lipofuscinosis: impact of recent genetic advances and expansion of the clinicopathologic spectrum. Curr Neurol Neurosci Rep 2014; 13:366. [PMID: 23775425 DOI: 10.1007/s11910-013-0366-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal ceroid lipofuscinosis (NCL), first clinically described in 1826 and pathologically defined in the 1960s, refers to a group of disorders mostly diagnosed in the childhood years that involve the accumulation of lysosomal storage material with characteristic ultrastructure and prominent neurodegenerative features including vision loss, seizures, motor and cognitive function deterioration, and often times, psychiatric disturbances. All NCL disorders evidence early morbidity and treatment options are limited to symptomatic and palliative care. While distinct genetic forms of NCL have long been recognized, recent genetic advances are considerably widening the NCL genotypic and phenotypic spectrum, highlighting significant overlap with other neurodegenerative diseases. This review will discuss these recent advances and the expanded potential for increased awareness and new research that will ultimately lead to effective treatments for NCL and related disorders.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
17
|
Cohn-Hokke PE, Wong TH, Rizzu P, Breedveld G, van der Flier WM, Scheltens P, Baas F, Heutink P, Meijers-Heijboer EJ, van Swieten JC, Pijnenburg YAL. Mutation frequency of PRKAR1B and the major familial dementia genes in a Dutch early onset dementia cohort. J Neurol 2014; 261:2085-92. [DOI: 10.1007/s00415-014-7456-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 12/11/2022]
|
18
|
Fogel BL, Clark MC, Geschwind DH. The neurogenetics of atypical parkinsonian disorders. Semin Neurol 2014; 34:217-24. [PMID: 24963681 DOI: 10.1055/s-0034-1381738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although classic Parkinson disease is the disorder most commonly associated with the clinical feature of parkinsonism, there is in fact a broader spectrum of disease represented by a collection of phenotypically similar neurodegenerative conditions that mimic many of its core features. These atypical parkinsonian disorders most commonly include progressive supranuclear palsy and corticobasal degeneration, disorders both associated with frontotemporal dementia, as well as multiple system atrophy and dementia with Lewy bodies. Although the clinical distinction of these disorders still remains a challenge to physicians, recent advances in genetics are poised to tease apart the differences. Insights into the molecular etiologies underlying these conditions will improve diagnosis, yield a better understanding of the underlying disease pathology, and ultimately lend stimulation to the development of potential treatments. At the same time, the wide range of phenotypes observed from mutations in a single gene warrants broad testing facilitated by advances in DNA sequencing. These expanding genomic approaches, ranging from the use of next-generation sequencing to identify causative or risk-associated gene variations to the study of epigenetic modification linking human genetics to environmental factors, are poised to lead the field into a new age of discovery.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Mary C Clark
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Harper L, Barkhof F, Scheltens P, Schott JM, Fox NC. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014; 85:692-8. [PMID: 24133287 PMCID: PMC4033032 DOI: 10.1136/jnnp-2013-306285] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurate and timely diagnosis of dementia is important to guide management and provide appropriate information and support to patients and families. Currently, with the exception of individuals with genetic mutations, postmortem examination of brain tissue remains the only definitive means of establishing diagnosis in most cases, however, structural neuroimaging, in combination with clinical assessment, has value in improving diagnostic accuracy during life. Beyond the exclusion of surgical pathology, signal change and cerebral atrophy visible on structural MRI can be used to identify diagnostically relevant imaging features, which provide support for clinical diagnosis of neurodegenerative dementias. While no structural imaging feature has perfect sensitivity and specificity for a given diagnosis, there are a number of imaging characteristics which provide positive predictive value and help to narrow the differential diagnosis. While neuroradiological expertise is invaluable in accurate scan interpretation, there is much that a non-radiologist can gain from a focused and structured approach to scan analysis. In this article we describe the characteristic MRI findings of the various dementias and provide a structured algorithm with the aim of providing clinicians with a practical guide to assessing scans.
Collapse
Affiliation(s)
- Lorna Harper
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, , London, UK
| | | | | | | | | |
Collapse
|
20
|
Zou Z, Liu C, Che C, Huang H. Clinical genetics of Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:291862. [PMID: 24955352 PMCID: PMC4052685 DOI: 10.1155/2014/291862] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease and the most common form of dementia in the elderly. It is a complex disorder with environmental and genetic components. There are two major types of AD, early onset and the more common late onset. The genetics of early-onset AD are largely understood with mutations in three different genes leading to the disease. In contrast, while susceptibility loci and alleles associated with late-onset AD have been identified using genetic association studies, the genetics of late-onset Alzheimer's disease are not fully understood. Here we review the known genetics of early- and late-onset AD, the clinical features of EOAD according to genotypes, and the clinical implications of the genetics of AD.
Collapse
Affiliation(s)
- Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chunhui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
21
|
Abstract
25% of all people aged 55 years and older have a family history of dementia. For most, the family history is due to genetically complex disease, where many genetic variations of small effect interact to increase risk of dementia. The lifetime risk of dementia for these families is about 20%, compared with 10% in the general population. A small proportion of families have an autosomal dominant family history of early-onset dementia, which is often due to mendelian disease, caused by a mutation in one of the dementia genes. Each family member has a 50% chance of inheriting the mutation, which confers a lifetime dementia risk of over 95%. In this Review, we focus on the evidence for, and the approach to, genetic testing in Alzheimer's disease (APP, PSEN1, and PSEN2 genes), frontotemporal dementia (MAPT, GRN, C9ORF72, and other genes), and other familial dementias. We conclude by discussing the practical aspects of genetic counselling.
Collapse
Affiliation(s)
- Clement T Loy
- School of Public Health, University of Sydney, Sydney, NSW, Australia; Neuroscience Research Australia, Randwick, NSW, Australia; Huntington Disease Service, Westmead Hospital, Westmead, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia; University of New South Wales, Kensington, NSW, Australia
| | - Anne M Turner
- Department of Medical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - John B J Kwok
- Neuroscience Research Australia, Randwick, NSW, Australia; University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
22
|
Detecting gene mutations in Japanese Alzheimer's patients by semiconductor sequencing. Neurobiol Aging 2014; 35:1780.e1-5. [PMID: 24559647 DOI: 10.1016/j.neurobiolaging.2014.01.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/16/2013] [Accepted: 01/21/2014] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. To date, several genes have been identified as the cause of AD, including PSEN1, PSEN2, and APP. The association between APOE and late-onset AD has also been reported. We here used a bench top next-generation sequencer, which uses an integrated semiconductor device, detects hydrogen ions, and operates at a high-speed using nonoptical technology. We examined 45 Japanese AD patients with positive family histories, and 29 sporadic patients with early onset (<60-year-old). Causative mutations were detected in 5 patients in the familial group (11%). Three patients had a known heterozygous missense mutation in the PSEN1 gene (p.H163R). Two patients from 1 family had a novel heterozygous missense mutation in the PSEN1 gene (p.F386L). In the early onset group, 1 patient carrying homozygous APOEε4 had a novel heterozygous missense mutation in the PSEN2 gene (p.T421M). Approximately 43% patients were APOEε4 positive in our study. This new sequencing technology is useful for detecting genetic variations in familial AD.
Collapse
|
23
|
Levenson RW, Sturm VE, Haase CM. Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology. Annu Rev Clin Psychol 2014; 10:581-606. [PMID: 24437433 PMCID: PMC3980958 DOI: 10.1146/annurev-clinpsy-032813-153653] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disruptions in emotional, cognitive, and social behavior are common in neurodegenerative disease and in many forms of psychopathology. Because neurodegenerative diseases have patterns of brain atrophy that are much clearer than those of psychiatric disorders, they may provide a window into the neural bases of common emotional and behavioral symptoms. We discuss five common symptoms that occur in both neurodegenerative disease and psychopathology (i.e., anxiety, dysphoric mood, apathy, disinhibition, and euphoric mood) and their associated neural circuitry. We focus on two neurodegenerative diseases (i.e., Alzheimer's disease and frontotemporal dementia) that are common and well characterized in terms of emotion, cognition, and social behavior and in patterns of associated atrophy. Neurodegenerative diseases provide a powerful model system for studying the neural correlates of psychopathological symptoms; this is supported by evidence indicating convergence with psychiatric syndromes (e.g., symptoms of disinhibition associated with dysfunction in orbitofrontal cortex in both frontotemporal dementia and bipolar disorder). We conclude that neurodegenerative diseases can play an important role in future approaches to the assessment, prevention, and treatment of mental illness.
Collapse
Affiliation(s)
- Robert W. Levenson
- Department of Psychology and Institute of Personality and Social Research, University of California, Berkeley
| | | | | |
Collapse
|
24
|
Abstract
Over the past decade, there has been a dramatic evolution of genetic methodologies that can be used to identify genes contributing to disease. Initially, the focus was primarily on classical linkage analysis; more recently, genomewide association studies, and high-throughput whole genome and whole exome sequencing have provided efficient approaches to detect common and rare variation contributing to disease risk. Application of these methodologies to dementias has led to the nomination of dozens of causative and susceptibility genes, solidifying the recognition that genetic factors are important contributors to the disease processes. In this review, the authors focus on current knowledge of the genetics of Alzheimer's disease and frontotemporal lobar degeneration. A working understanding of the genes relevant to common dementias will become increasingly critical, as options for genetic testing and eventually gene-specific therapeutics are developed.
Collapse
Affiliation(s)
- Janice L Farlow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
25
|
A novel MAPT mutation, G55R, in a frontotemporal dementia patient leads to altered Tau function. PLoS One 2013; 8:e76409. [PMID: 24086739 PMCID: PMC3785453 DOI: 10.1371/journal.pone.0076409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment.
Collapse
|
26
|
van Blitterswijk M, Baker MC, DeJesus-Hernandez M, Ghidoni R, Benussi L, Finger E, Hsiung GYR, Kelley BJ, Murray ME, Rutherford NJ, Brown PE, Ravenscroft T, Mullen B, Ash PEA, Bieniek KF, Hatanpaa KJ, Karydas A, Wood EM, Coppola G, Bigio EH, Lippa C, Strong MJ, Beach TG, Knopman DS, Huey ED, Mesulam M, Bird T, White CL, Kertesz A, Geschwind DH, Van Deerlin VM, Petersen RC, Binetti G, Miller BL, Petrucelli L, Wszolek ZK, Boylan KB, Graff-Radford NR, Mackenzie IR, Boeve BF, Dickson DW, Rademakers R. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology 2013; 81:1332-41. [PMID: 24027057 DOI: 10.1212/wnl.0b013e3182a8250c] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases. METHODS A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology. RESULTS We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations. CONCLUSIONS Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.
Collapse
Affiliation(s)
- Marka van Blitterswijk
- From the Departments of Neuroscience (M.v.B., M.C.B., M.D.-H., M.E.M., N.J.R., P.E.B., T.R., B.M., P.E.A.A., K.F.B., L.P., D.W.D., R.R.) and Neurology (Z.K.W., K.B.B., N.R.G.-R.), Mayo Clinic, Jacksonville, FL; Proteomics Unit and NeuroBioGen Lab-Memory Clinic (R.G., L.B., G.B.), IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy; Department of Clinical Neurological Sciences (E.F., M.J.S.), Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada; Division of Neurology (G.-Y.R.H.), and Department of Pathology and Laboratory Medicine (I.R.M.), University of British Columbia, Vancouver, Canada; Department of Neurology (B.J.K., D.S.K., R.C.P., B.F.B.), Mayo Clinic, Rochester, MN; Department of Pathology and Alzheimer's Disease Center (K.J.H., C.L.W.), University of Texas Southwestern Medical Center, Dallas; Department of Neurology (A.K., B.L.M.), University of California, San Francisco; Center for Neurodegenerative Disease Research (E.M.W., V.M.V.D.), Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia; Department of Neurology (G.C., D.H.G.), The David Geffen School of Medicine at University of California, Los Angeles; Cognitive Neurology & Alzheimer Disease Center (E.H.B., M.M.), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Neurology (C.L.), Drexel University College of Medicine, Philadelphia, PA; Molecular Brain Research Group (M.J.S.), Robarts Research Institute, London, Canada; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ; Cognitive Neuroscience Section (E.D.H.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Psychiatry and Neurology (E.D.H.), Columbia University, New York; and Department of Neurology (T.B.), University of Washington School of Medicine, Seattle
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ashrafian H, Harling L, Darzi A, Athanasiou T. Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions? Metab Brain Dis 2013; 28:341-53. [PMID: 23653255 DOI: 10.1007/s11011-013-9412-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/17/2013] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are amongst the leading causes of worldwide disability, morbidity and decreased quality of life. They are increasingly associated with the concomitant worldwide epidemic of obesity. Although the prevalence of both AD and PD continue to rise, the available treatment strategies to combat these conditions remain ineffective against an increase in global neurodegenerative risk factors. There is now epidemiological and mechanistic evidence associating obesity and its related disorders of impaired glucose homeostasis, type 2 diabetes mellitus and metabolic syndrome with both AD and PD. Here we describe the clinical and molecular relationship between obesity and neurodegenerative disease. Secondly we outline the protective role of weight loss, metabolic and caloric modifying interventions in the context of AD and PD. We conclude that the application of caloric restriction through dietary changes, bariatric (metabolic) surgery and gut hormone therapy may offer novel therapeutic strategies against neurodegenerative disorders. Investigating the protective mechanisms of weight loss, metabolic and caloric modifying interventions can increase our understanding of these major public health diseases and their management.
Collapse
Affiliation(s)
- Hutan Ashrafian
- The Department of Surgery and Cancer, Imperial College London, Imperial College London at St Mary's Hospital Campus, 10th Floor, Queen Elizabeth the Queen Mother (QEQM) Building, Praed Street, London, W2 1NY, UK.
| | | | | | | |
Collapse
|
28
|
Dobson-Stone C, Polly P, Korgaonkar MS, Williams LM, Gordon E, Schofield PR, Mather K, Armstrong NJ, Wen W, Sachdev PS, Kwok JBJ. GSK3B and MAPT polymorphisms are associated with grey matter and intracranial volume in healthy individuals. PLoS One 2013; 8:e71750. [PMID: 23951236 PMCID: PMC3741177 DOI: 10.1371/journal.pone.0071750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022] Open
Abstract
The microtubule-associated protein tau gene (MAPT) codes for a protein that plays an integral role in stabilisation of microtubules and axonal transport in neurons. As well as its role in susceptibility to neurodegeneration, previous studies have found an association between the MAPT haplotype and intracranial volume and regional grey matter volumes in healthy adults. The glycogen synthase kinase-3β gene (GSK3B) codes for a serine/threonine kinase that phosphorylates various proteins, including tau, and has also been associated with risk for neurodegenerative disorders and schizophrenia. We examined the effects of MAPT and two functional promoter polymorphisms in GSK3B (rs3755557 and rs334558) on total grey matter and intracranial volume in three independent cohorts totaling 776 neurologically healthy individuals. In vitro analyses revealed a significant effect of rs3755557 on gene expression, and altered binding of at least two transcription factors, Octamer transcription factor 1 (Oct-1) and Pre-B-cell leukemia transcription factor 1 (Pbx-1), to the GSK3B promoter. Meta-analysis across the three cohorts revealed a significant effect of rs3755557 on total grey matter volume (summary B = 0.082, 95% confidence interval = 0.037–0.128) and intracranial volume (summary B = 0.113, 95% confidence interval = 0.082–0.144). No significant effect was observed for MAPT H1/H2 diplotype or GSK3B rs334558 on total grey matter or intracranial volume. Our genetic and biochemical analyses have identified a role for GSK3B in brain development, which could have important aetiological implications for neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carol Dobson-Stone
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Department of Pathology and Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | - Patsie Polly
- Department of Pathology and Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | - Mayuresh S. Korgaonkar
- The Brain Dynamics Centre, University of Sydney Medical School and Westmead Millennium Institute, Westmead, Australia
| | - Leanne M. Williams
- The Brain Dynamics Centre, University of Sydney Medical School and Westmead Millennium Institute, Westmead, Australia
- Brain Resource International Database, Brain Resource Ltd., Ultimo, Sydney, New South Wales, Australia, and San Francisco, California
| | - Evian Gordon
- Brain Resource International Database, Brain Resource Ltd., Ultimo, Sydney, New South Wales, Australia, and San Francisco, California
| | - Peter R. Schofield
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Department of Pathology and Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | - Karen Mather
- Euroa Centre, Prince of Wales Hospital, Randwick, Australia
| | - Nicola J. Armstrong
- Cancer Program, Garvan Institute of Medical Research, Sydney, Australia, School of Mathematics and Statistics, and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Wei Wen
- Euroa Centre, Prince of Wales Hospital, Randwick, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S. Sachdev
- Euroa Centre, Prince of Wales Hospital, Randwick, Australia
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - John B. J. Kwok
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Department of Pathology and Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Kensington, Australia
- * E-mail:
| |
Collapse
|
29
|
Masellis M, Sherborn K, Neto P, Sadovnick DA, Hsiung GYR, Black SE, Prasad S, Williams M, Gauthier S. Early-onset dementias: diagnostic and etiological considerations. ALZHEIMERS RESEARCH & THERAPY 2013; 5:S7. [PMID: 24565469 PMCID: PMC3936399 DOI: 10.1186/alzrt197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper summarizes the body of literature about early-onset dementia (EOD) that led to recommendations from the Fourth Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. A broader differential diagnosis is required for EOD compared with late-onset dementia. Delays in diagnosis are common, and the social impact of EOD requires special care teams. The etiologies underlying EOD syndromes should take into account family history and comorbid diseases, such as cerebrovascular risk factors, that may influence the clinical presentation and age at onset. For example, although many EODs are more likely to have Mendelian genetic and/or metabolic causes, the presence of comorbidities may drive the individual at risk for late-onset dementia to manifest the symptoms at an earlier age, which contributes further to the observed heterogeneity and may confound diagnostic investigation. A personalized medicine approach to diagnosis should therefore be considered depending on the age at onset, clinical presentation, and comorbidities. Genetic counseling and testing as well as specialized biochemical screening are often required, especially in those under the age of 40 and in those with a family history of autosomal dominant or recessive disease. Novel treatments in the drug development pipeline for EOD, such as genetic forms of Alzheimer's disease, should target the specific pathogenic cascade implicated by the mutation or biochemical defect.
Collapse
|
30
|
Bahia VS, Takada LT, Deramecourt V. Neuropathology of frontotemporal lobar degeneration: a review. Dement Neuropsychol 2013; 7:19-26. [PMID: 29213815 PMCID: PMC5619540 DOI: 10.1590/s1980-57642013dn70100004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. Three main clinical variants are widely recognized within the FTLD spectrum: the behavioural variant of frontotemporal dementia (bvFTD), semantic dementia (SD) and progressive non-fluent aphasia (PNFA). FTLD represents a highly heterogeneous group of neurodegenerative disorders which are best classified according to the main protein component of pathological neuronal and glial inclusions. The most common pathological class of FTLD is associated with the TDP-43 protein (FTLD-TDP), while FTLD-Tau is considered slightly less common while the FTLD-FUS (Fused in sarcoma protein) pathology is rare. In this review, these three major pathological types of FTLD are discussed.
Collapse
Affiliation(s)
- Valéria Santoro Bahia
- MD, PhD. Behavioral and Cognitive Neurology Unit,
Department of Neurology, Hospital das Clínicas, University of São
Paulo School of Medicine, São Paulo SP, Brazil
| | - Leonel Tadao Takada
- MD, Behavioral and Cognitive Neurology Unit, Department
of Neurology, Hospital das Clínicas, University of São Paulo School of
Medicine, São Paulo SP, Brazil
| | - Vincent Deramecourt
- MD, PhD, Univ Lille Nord de France, Laboratory of
Excellence DISTALZ, Memory Clinic, Histology and Pathology Department, Lille,
France
| |
Collapse
|