1
|
Cibulka M, Brodnanova M, Halasova E, Kurca E, Kolisek M, Grofik M. The Role of Magnesium in Parkinson's Disease: Status Quo and Implications for Future Research. Int J Mol Sci 2024; 25:8425. [PMID: 39125993 PMCID: PMC11312984 DOI: 10.3390/ijms25158425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases represent an increasing economic, social, and, above all, medical burden worldwide. The second most prevalent disease in this category is Parkinson's disease, surpassed only by Alzheimer's. It is a treatable but still incurable systemic disease with a pathogenesis that has not yet been elucidated. Several theories are currently being developed to explain the causes and progression of Parkinson's disease. Magnesium is one of the essential macronutrients and is absolutely necessary for life as we know it. The magnesium cation performs several important functions in the cell in the context of energetic metabolism, substrate metabolism, cell signalling, and the regulation of the homeostasis of other ions. Several of these cellular processes have been simultaneously described as being disrupted in the development and progression of Parkinson's disease. The relationship between magnesium homeostasis and the pathogenesis of Parkinson's disease has received little scientific attention to date. The aim of this review is to summarise and critically evaluate the current state of knowledge on the possible role of magnesium in the pathogenesis of Parkinson's disease and to outline possible future directions for research in this area.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| |
Collapse
|
2
|
Subramaniyan S, Kuriakose BB, Mushfiq S, Prabhu NM, Muthusamy K. Gene Signals and SNPs Associated with Parkinson's Disease: A Nutrigenomics and Computational Prospective Insights. Neuroscience 2023; 533:77-95. [PMID: 37858629 DOI: 10.1016/j.neuroscience.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Parkinson's disease is the most prevalent chronic neurodegenerative disease. Neurological conditions for PD were influenced by a variety of epigenetic factors and SNPs in some of the coexisting genes that were expressed. This article focused on nutrigenomics of PD and the prospective highlighting of how these genes are regulated in terms of nutritive factors and the genetic basis of PD risk, onset, and progression. Multigenetic associations of the following genetic alterations in the genes of SNCA, LRRK2, UCHL1, PARK2,PINK1, DJ-1, and ATP13A2 have been reported with the familial and de novo genetic origins of PD. Over the past two decades, significant attempts have been made to understand the biological mechanisms that are potential causes for this disease, as well as to identify therapeutic substances for the prevention and management of PD. Nutrigenomics has sparked considerable interest due to its nutritional, safe, and therapeutic effects on a variety of chronic diseases. In this study, we summarise some of the nutritive supplements that have an impact on PD.
Collapse
Affiliation(s)
- Swetha Subramaniyan
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Sakeena Mushfiq
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | | | | |
Collapse
|
3
|
Xiao B, Deng X, Ng EYL, Lo YL, Xu Z, Tay KY, Au WL, Ng A, Tan LCS, Tan EK. Parkinson's disease genome-wide association study-linked PARK16 variant is associated with a lower risk of cognitive impairment: A 4-year observational study. Eur J Neurol 2023; 30:2874-2878. [PMID: 37227164 DOI: 10.1111/ene.15893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND PURPOSE A genome-wide association study-linked variant (PARK16 rs6679073) modulates the risk of Parkinson's disease (PD). We postulate that there may be differences in clinical characteristics between PARK16 rs6679073 carriers and noncarriers. In a prospective study, we investigate the clinical characteristics between PARK16 rs6679073 A allele carriers and noncarriers over 4 years. METHODS A total of 204 PD patients, comprising 158 PARK16 rs6679073 A allele carriers and 46 noncarriers, were recruited. All patients underwent motor and nonmotor symptom and cognitive assessments yearly over 4 years. RESULTS PARK16 rs6679073 carriers were less likely to have mild cognitive impairment (MCI) compared to noncarriers at both baseline (48.1% vs. 67.4%, p = 0.027) and 4-year follow-up (29.3% vs. 58.6%, p = 0.007). CONCLUSIONS PD PARK16 rs6679073 carriers had significantly lower frequency of MCI in a 4-year follow-up study, suggesting that the variant may have a neuroprotective effect on cognitive functions.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Xiao Deng
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Ebonne Yu-Lin Ng
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
| | - Yew-Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
| | - Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
| | - Kay-Yaw Tay
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
| | - Wing-Lok Au
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Adeline Ng
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
- Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
4
|
Li J, Yi M, Li B, Yin S, Zhang Y, Huang Z, Shu L, Zhang Y. Polymorphism of neurodegeneration-related genes associated with Parkinson’s disease risk. Neurol Sci 2022; 43:5301-5312. [DOI: 10.1007/s10072-022-06192-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022]
|
5
|
Biomarker characterization of clinical subtypes of Parkinson Disease. NPJ Parkinsons Dis 2022; 8:109. [PMID: 36038597 PMCID: PMC9424224 DOI: 10.1038/s41531-022-00375-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe biological underpinnings of the PD clusters remain unknown as the existing PD clusters lacks biomarker characterization. We try to identify clinical subtypes of Parkinson Disease (PD) in an Asian cohort and characterize them by comparing clinical assessments, genetic status and blood biochemical markers. A total of 206 PD patients were included from a multi-centre Asian cohort. Hierarchical clustering was performed to generate PD subtypes. Clinical and biological characterization of the subtypes were performed by comparing clinical assessments, allelic distributions of Asian related PD gene (SNCA, LRRK2, Park16, ITPKB, SV2C) and blood biochemical markers. Hierarchical clustering method identified three clusters: cluster A (severe subtype in motor, non-motor and cognitive domains), cluster B (intermediate subtype with cognitive impairment and mild non-motor symptoms) and cluster C (mild subtype and young age of onset). The three clusters had significantly different allele frequencies in two SNPs (Park16 rs6679073 A allele carriers in cluster A B C: 67%, 74%, 89%, p = 0.015; SV2C rs246814 T allele distribution: 7%, 12%, 25%, p = 0.026). Serum homocysteine (Hcy) and C-reactive protein (CRP) levels were also significantly different among three clusters (Mean levels of Hcy and CRP among cluster A B C were: 19.4 ± 4.2, 18.4 ± 5.7, 15.6 ± 5.6, adjusted p = 0.005; 2.5 ± 5.0, 1.5 ± 2.4, 0.9 ± 2.1, adjusted p < 0.0001, respectively). Of the 3 subtypes identified amongst early PD patients, the severe subtype was associated with significantly lower frequency of Park16 and SV2C alleles and higher levels of Hcy and CRP. These biomarkers may be useful to stratify PD subtypes and identify more severe subtypes.
Collapse
|
6
|
Cibulka M, Brodnanova M, Grendar M, Necpal J, Benetin J, Han V, Kurca E, Nosal V, Skorvanek M, Vesely B, Stanclova A, Lasabova Z, Pös Z, Szemes T, Stuchlik S, Grofik M, Kolisek M. Alzheimer's Disease-Associated SNP rs708727 in SLC41A1 May Increase Risk for Parkinson's Disease: Report from Enlarged Slovak Study. Int J Mol Sci 2022; 23:ijms23031604. [PMID: 35163527 PMCID: PMC8835868 DOI: 10.3390/ijms23031604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
SLC41A1 (A1) SNPs rs11240569 and rs823156 are associated with altered risk for Parkinson's disease (PD), predominantly in Asian populations, and rs708727 has been linked to Alzheimer's disease (AD). In this study, we have examined a potential association of the three aforementioned SNPs and of rs9438393, rs56152218, and rs61822602 (all three lying in the A1 promoter region) with PD in the Slovak population. Out of the six tested SNPs, we have identified only rs708727 as being associated with an increased risk for PD onset in Slovaks. The minor allele (A) in rs708727 is associated with PD in dominant and completely over-dominant genetic models (ORD = 1.36 (1.05-1.77), p = 0.02, and ORCOD = 1.34 (1.04-1.72), p = 0.02). Furthermore, the genotypic triplet GG(rs708727) + AG(rs823156) + CC(rs61822602) might be clinically relevant despite showing a medium (h ≥ 0.5) size difference (h = 0.522) between the PD and the control populations. RandomForest modeling has identified the power of the tested SNPs for discriminating between PD-patients and the controls to be essentially zero. The identified association of rs708727 with PD in the Slovak population leads us to hypothesize that this A1 polymorphism, which is involved in the epigenetic regulation of the expression of the AD-linked gene PM20D1, is also involved in the pathoetiology of PD (or universally in neurodegeneration) through the same or similar mechanism as in AD.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Marian Grendar
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Jan Necpal
- Clinic of Neurology, AGEL Hospital in Zvolen, 96001 Zvolen, Slovakia;
| | - Jan Benetin
- Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, 83303 Bratislva, Slovakia;
| | - Vladimir Han
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Egon Kurca
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Vladimir Nosal
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Matej Skorvanek
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Branislav Vesely
- Clinic of Neurology, Faculty Hospital in Nitra, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia;
| | - Andrea Stanclova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zora Lasabova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zuzana Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Stanislav Stuchlik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
| | - Milan Grofik
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
- Correspondence: (M.G.); (M.K.)
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
- Correspondence: (M.G.); (M.K.)
| |
Collapse
|
7
|
The effect of the PARK16 rs11240572 variant on brain structure in Parkinson's disease. Brain Struct Funct 2021; 226:2665-2673. [PMID: 34373950 DOI: 10.1007/s00429-021-02359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Increasing evidence suggests that genetic factors play a key role in the development of Parkinson's disease (PD). The variant rs11240572 in the PARK16 gene locus is strongly associated with PD. However, its effect on the pathogenesis of PD is yet to be clarified. The objective of the study was to explore the effect of the PARK16 rs11240572 variant on brain structure in PD patients. A total of 51 PD patients were enrolled in the study and genotyped for the rs11240572 variant. Clinical assessments and MRI scans were conducted across all participants. Voxel-based morphometry (VBM) was used to investigate gray matter volume (GMV) of the whole brain between these two groups. Correlation analysis was performed to identify the relationships between GMV and clinical features. There were 17 rs11240572-A variant carriers and 34 non-carriers, with no significant demographic differences between these two groups. Compared with non-carriers, rs11240572-A carriers showed increased GMV in the left caudate nucleus and putamen, but decreased GMV in the left superior temporal gyrus and supramarginal gyrus. In non-carriers, left basal ganglia GMV was positively correlated with UPDRS III (r = 0.365, p = 0.034) and bradykinesia (r = 0.352, p = 0.042), but negatively correlated with MMSE (r = - 0.344, p = 0.047), while in carriers negative correlation between basal ganglia GMV and MMSE was also observed (r = - 0.666, p = 0.004). Moreover, the GMV of left temporoparietal cortex was positively associated with cognitive function in both groups (carriers, r = 0.692, p = 0.002; non-carriers, r = 0.879, p < 0.001). When reducing the sample size of non-carriers to the level of the carrier sample, similar correlations were observed in both groups. Our study showed that the PARK16 rs11240572 variant affects the brain structure of patients with PD, especially in the basal ganglia and temporoparietal cortex. This indicated that this variant might play an important role in the pathogenesis of PD.
Collapse
|
8
|
Association of ZNF184, IL1R2, LRRK2, ITPKB, and PARK16 with sporadic Parkinson’s disease in Eastern China. Neurosci Lett 2020; 735:135261. [DOI: 10.1016/j.neulet.2020.135261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022]
|
9
|
Cibulka M, Brodnanova M, Grendar M, Grofik M, Kurca E, Pilchova I, Osina O, Tatarkova Z, Dobrota D, Kolisek M. SNPs rs11240569, rs708727, and rs823156 in SLC41A1 Do Not Discriminate Between Slovak Patients with Idiopathic Parkinson's Disease and Healthy Controls: Statistics and Machine-Learning Evidence. Int J Mol Sci 2019; 20:ijms20194688. [PMID: 31546642 PMCID: PMC6801379 DOI: 10.3390/ijms20194688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022] Open
Abstract
Gene SLC41A1 (A1) is localized within Parkinson’s disease-(PD)-susceptibility locus PARK16 and encodes for the Na+/Mg2+-exchanger. The association of several A1 SNPs with PD has been studied. Two, rs11240569 and rs823156, have been associated with reduced PD-susceptibility primarily in Asian populations. Here, we examined the association of rs11240569, rs708727, and rs823156 with PD in the Slovak population and their power to discriminate between PD patients and healthy controls. The study included 150 PD patients and 120 controls. Genotyping was performed with the TaqMan® approach. Data were analyzed by conventional statistics and Random Forest machine-learning (ML) algorithm. Individually, none of the three SNPs is associated with an altered risk for PD-onset in Slovaks. However, a combination of genotypes of SNP-triplet GG(rs11240569)/AG(rs708727)/AA(rs823156) is significantly (p < 0.05) more frequent in the PD (13.3%) than in the control (5%) cohort. ML identified the power of the tested SNPs in isolation or of their singlets (joined), duplets and triplets to discriminate between PD-patients and healthy controls as zero. Our data further substantiate differences between diverse populations regarding the association of A1 polymorphisms with PD-susceptibility. Lack of power of the tested SNPs to discriminate between PD and healthy cases render their clinical/diagnostic relevance in the Slovak population negligible.
Collapse
Affiliation(s)
- Michal Cibulka
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Maria Brodnanova
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Marian Grendar
- Department of Bioinformatics, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Milan Grofik
- Clinic of Neurology, University Hospital in Martin, 03601 Martin, Slovakia.
| | - Egon Kurca
- Clinic of Neurology, University Hospital in Martin, 03601 Martin, Slovakia.
| | - Ivana Pilchova
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Oto Osina
- Clinic of Occupational Medicine and Toxicology, University Hospital in Martin, 03601 Martin, Slovakia.
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dusan Dobrota
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Martin Kolisek
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| |
Collapse
|
10
|
Association between rs823128 polymorphism and the risk of Parkinson's disease: A meta-analysis. Neurosci Lett 2017; 665:110-116. [PMID: 29191693 DOI: 10.1016/j.neulet.2017.11.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/17/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022]
Abstract
Numerous published case-control studies have investigated a role of PARK16 gene in susceptibility to Parkinson's disease (PD), but the results remain conflicting and under-powered. Herein, we performed this meta-analysis to evaluate the possible association between the polymorphism of the PARK16 rs8231128 (A/G) and PD.A comprehensive search of six databases was conducted to identify all case-control studies involving PARK16rs823128variants and PD risk up to August 2017. The strict inclusion and exclusion criteria were applied. A total of 9 studies including 15 case-control studies with 7277 PD cases and 6188 controls were included in the meta-analysis. And STATA 12.0 statistics software was used to calculate available data from each study. The crude odds ratios (OR) and 95% confidence interval (CI) were calculated to assess the genetic association between PARK16 rs823128 polymorphism and the risk of PD. In the combined analysis, results showed a significant association between rs823128 and PD in allelic model(G vs. A: OR=0.886, 95% CI=0.811-0.969, P=0.008), dominant model (GG+ AG vs. AA: OR=0.886, 95% CI=0.804-0.976, P=0.014), and heterozygote model (AG vs. AA: OR=0.897, 95% CI=0.812-0.991, P=0.032). Further, ethnicity based analysis showed a significant association in Asian and Chilean population, but not in Caucasian samples. Within its limitations, this meta-analysis demonstrated that the rs823128 variants(G allele, GA and GG genotype)in PARK16 might be a potential protective factor for PD. However, these associations vary in different ethnicities.
Collapse
|
11
|
Bai Y, Dong L, Huang X, Zheng S, Qiu P, Lan F. Associations of rs823128, rs1572931, and rs823156 polymorphisms with reduced Parkinson's disease risks. Neuroreport 2017; 28:936-941. [PMID: 28749816 PMCID: PMC5585133 DOI: 10.1097/wnr.0000000000000846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/29/2017] [Indexed: 12/14/2022]
Abstract
The PARK16 locus is considered to play a protective role in Parkinson's disease (PD). However, the epidemiological evidence on the relationships between PARK16 single-nucleotide polymorphisms (rs823128, rs1572931, and rs823156) and PD is inconsistent. Therefore, we carried out a meta-analysis to validate the relationships and performed a bioinformatic analysis to explore putative regulation mechanisms of the single-nucleotide polymorphisms in PD. Through meta-analysis, we confirmed that minor variants of rs823128A>G, rs1572931C>T, and rs823156A>G played protective roles in PD. Through bioinformatic analysis, we predicted that rs823128, rs1572931, and rs823156 as noncoding variants of NUCKS1, RAB29, and SLC41A1, respectively, might affect PD risk by altering the transcription factor-binding capability of the genes. These findings suggest new clues for PD research and potential targets for PD prevention and treatment.
Collapse
Affiliation(s)
- Ye Bai
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| | - Lihong Dong
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| | - Xinghua Huang
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| | - Shuanglin Zheng
- Department of Clinical Genetics and Experimental Medicine, Affiliated Dongfang Hospital of Xiamen University, Fuzhou, China
| | - Ping Qiu
- Department of Clinical Genetics and Experimental Medicine, Affiliated Dongfang Hospital of Xiamen University, Fuzhou, China
| | - Fenghua Lan
- Department of Clinical Genetics and Experimental Medicine, Fuzhou General Hospital
| |
Collapse
|
12
|
Association between PARK16 and Parkinson's disease: A meta-analysis. Neurosci Lett 2017; 657:179-188. [PMID: 28807727 DOI: 10.1016/j.neulet.2017.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/21/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
Recent years, several case-control studies reported that two polymorphisms (rs947211 and 1572913) within the PARK16 locus were associated with the Parkinson's disease (PD). However, the results were still controversial. Herein, we conducted a comprehensive meta-analysis to estimate the associations between two polymorphisms and PD. Seven databases (PubMed, Google Scholar, EMBASE, Web of Science, CNKI (China National Knowledge Infrastructure), VIP and Wanfang) were searched to identify the eligible studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the associations of two polymorphisms with PD susceptibility. Totally, 15 studies with 6637 cases and 6774 controls were included in our meta-analysis. The results showed that rs947211 variants were associated with a decreased risk of PD in overall population. Stratified analysis found that rs947211 variants were associated with a significantly decreased risk of PD in Northeast Asian population, but a slightly decreased risk of PD in Southeast Asian and Caucasian population. With regard to rs1572913 polymorphism, the results suggested that rs1572913 variants contribute to decrease the risk of PD. Therefore, our meta-analysis suggested that rs947211 variants (A allele, AG and GG genotypes) may decrease the risk of PD in overall population, particularly in Northeast Asian population; and T allele, TC and TT genotypes of rs1572913 variants contributed to decrease the risk of PD.
Collapse
|