1
|
Li S, Ren X, Guan Y, Zhao F, Cao Y, Geng X, Wang Y, Wu N, Wu L, Zhao X. Genetic etiology study in a large cohort with congenital insensitivity to pain with anhidrosis. Pain 2024; 165:1926-1943. [PMID: 38833577 DOI: 10.1097/j.pain.0000000000003252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/06/2024] [Indexed: 06/06/2024]
Abstract
ABSTRACT Pathogenic variations in the NTRK1 can cause congenital insensitivity to pain with anhidrosis (CIPA), a rare autosomal recessive inherited neuropathy. The precise diagnosis of CIPA relies on the identification of pathogenic genotypes. Therefore, it is essential to expand the NTRK1 variation spectrum and improve molecular diagnosis methods. In this study, 74 probands with typical manifestations of CIPA but unknown genotypes were recruited. A comprehensive molecular genetic analysis was performed to identify variations in the NTRK1 , using techniques including Sanger and next-generation sequencing, bioinformatic analysis, quantitative polymerase chain reaction (qPCR), gap-PCR, short tandem repeat (STR) genotyping, and reverse-transcription PCR. In addition, functional assays were conducted to determine the pathogenicity of variants of uncertain significance (VUS) and further characterized changes in glycosylation and phosphorylation of 14 overexpressed mutant vectors with variants at different domains in the TrkA protein, which is encoded by NTRK1 . A total of 48 variations in the NTRK1 were identified, including 22 novel ones. When combined with data from another 53 CIPA patients examined in our previous work, this study establishes the largest genotypic and phenotypic spectra of CIPA worldwide, including 127 CIPA families. Moreover, functional studies indicated that the pathogenicity of VUS mainly affected insufficient glycosylation in the extracellular domain and abnormal phosphorylation in the intracellular domain. This study not only provides important evidence for precise diagnosis of CIPA but also further enriches our understanding of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Shuang Li
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiuzhi Ren
- Pediatric Orthopedics, Children's Hospital of Soochow University, Suzhou, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Feiyue Zhao
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yixuan Cao
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingzhu Geng
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanzhou Wang
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Xiuli Zhao
- Department of Medical Genetics, State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Pediatric Orthopedics, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Ao X, Parisien M, Zidan M, Grant AV, Martinsen AE, Winsvold BS, Diatchenko L. Rare variant analyses in large-scale cohorts identified SLC13A1 associated with chronic pain. Pain 2023:00006396-990000000-00273. [PMID: 36943258 DOI: 10.1097/j.pain.0000000000002882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/16/2022] [Indexed: 03/23/2023]
Abstract
ABSTRACT Chronic pain is a prevalent disease with increasing clinical challenges. Genome-wide association studies in chronic pain patients have identified hundreds of common pathogenic variants, yet they only explained a portion of individual variance of chronic pain. With the advances in next-generation sequencing technologies, it is now feasible to conduct rarer variants studies in large-scale databases. Here, we performed gene-based rare variant analyses in 200,000 human subjects in the UK biobank whole-exome sequencing database for investigating 9 different chronic pain states and validated our findings in 3 other large-scale databases. Our analyses identified the SLC13A1 gene coding for sodium/sulfate symporter associated with chronic back pain and multisite pain at the genome-wide level and with chronic headache, knee, and neck and shoulder pain at the nominal level. Seven loss-of-function rare variants were identified within the gene locus potentially contributing to the development of chronic pain, with 2 of them individually associated with back pain and multisite pain. These 2 rare variants were then tested for replication in 3 other biobanks, and the strongest evidence was found for rs28364172 as an individual contributor. Transcriptional analyses of Slc13a1 in rodents showed substantial regulation of its expression in the dorsal root ganglia and the sciatic nerve in neuropathic pain assays. Our results stress the importance of the SLC13A1 gene in sulfate homeostasis in the nervous system and its critical role in preventing pain states, thus suggesting new therapeutic approaches for treating chronic pain in a personalized manner, especially in people with mutations in the SLC13A1 gene.
Collapse
Affiliation(s)
- Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Marc Parisien
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Maha Zidan
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Audrey V Grant
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Amy E Martinsen
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bendik S Winsvold
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology and Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
4
|
Moraes BC, Ribeiro-Filho HV, Roldão AP, Toniolo EF, Carretero GPB, Sgro GG, Batista FAH, Berardi DE, Oliveira VRS, Tomasin R, Vieceli FM, Pramio DT, Cardoso AB, Figueira ACM, Farah SC, Devi LA, Dale CS, de Oliveira PSL, Schechtman D. Structural analysis of TrkA mutations in patients with congenital insensitivity to pain reveals PLCγ as an analgesic drug target. Sci Signal 2022; 15:eabm6046. [PMID: 35471943 DOI: 10.1126/scisignal.abm6046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chronic pain is a major health issue, and the search for new analgesics has become increasingly important because of the addictive properties and unwanted side effects of opioids. To explore potentially new drug targets, we investigated mutations in the NTRK1 gene found in individuals with congenital insensitivity to pain with anhidrosis (CIPA). NTRK1 encodes tropomyosin receptor kinase A (TrkA), the receptor for nerve growth factor (NGF) and that contributes to nociception. Molecular modeling and biochemical analysis identified mutations that decreased the interaction between TrkA and one of its substrates and signaling effectors, phospholipase Cγ (PLCγ). We developed a cell-permeable phosphopeptide derived from TrkA (TAT-pQYP) that bound the Src homology domain 2 (SH2) of PLCγ. In HEK-293T cells, TAT-pQYP inhibited the binding of heterologously expressed TrkA to PLCγ and decreased NGF-induced, TrkA-mediated PLCγ activation and signaling. In mice, intraplantar administration of TAT-pQYP decreased mechanical sensitivity in an inflammatory pain model, suggesting that targeting this interaction may be analgesic. The findings demonstrate a strategy to identify new targets for pain relief by analyzing the signaling pathways that are perturbed in CIPA.
Collapse
Affiliation(s)
- Beatriz C Moraes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Helder V Ribeiro-Filho
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Allan P Roldão
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Elaine F Toniolo
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP 05508-000, Brazil
| | - Gustavo P B Carretero
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Germán G Sgro
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil.,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040903, Brazil
| | - Fernanda A H Batista
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Damian E Berardi
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Victoria R S Oliveira
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP 05508-000, Brazil
| | - Rebeka Tomasin
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Felipe M Vieceli
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Dimitrius T Pramio
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Alexandre B Cardoso
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Ana C M Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Shaker C Farah
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Camila S Dale
- Laboratory of Neuromodulation of Experimental Pain (LaNed), Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP 05508-000, Brazil
| | - Paulo S L de Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio) Campinas, SP 13083-100, Brazil
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, SP 05508-000, Brazil
| |
Collapse
|
5
|
Palma JA, Yadav R, Gao D, Norcliffe-Kaufmann L, Slaugenhaupt S, Kaufmann H. Expanding the Genotypic Spectrum of Congenital Sensory and Autonomic Neuropathies Using Whole-Exome Sequencing. NEUROLOGY-GENETICS 2021; 7:e568. [PMID: 33884296 PMCID: PMC8054964 DOI: 10.1212/nxg.0000000000000568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/01/2021] [Indexed: 01/29/2023]
Abstract
Objective To test the hypothesis that many patients presenting with congenital insensitivity to pain have lesser known or unidentified mutations not captured by conventional genetic panels, we performed whole-exome sequencing in a cohort of well-characterized patients with a clinical diagnosis of congenital hereditary sensory and autonomic neuropathy with unrevealing conventional genetic testing. Methods We performed whole-exome sequencing (WES) in 13 patients with congenital impaired or absent sensation to pain and temperature with no identified molecular diagnosis from a conventional genetic panel. Patients underwent a comprehensive phenotypic assessment including autonomic function testing, and neurologic and ophthalmologic examinations. Results We identified known or likely pathogenic genetic causes of congenital insensitivity to pain in all 13 patients, spanning 9 genes, the vast majority of which were inherited in an autosomal recessive manner. These included known pathogenic variants (3 patients harboring mutations in TECPR2 and SCN11A), suspected pathogenic variants in genes described to cause congenital sensory and autonomic syndromes (7 patients harboring variants in NGF, LIFR, SCN9A, and PRDM12), and likely pathogenic variants in novel genes (4 patients harboring variants in SMPDL3A, PLEKHN1, and SCN10A). Conclusions Our results expand the genetic landscape of congenital sensory and autonomic neuropathies. Further validation of some identified variants should confirm their pathogenicity. WES should be clinically considered to expedite diagnosis, reduce laboratory investigations, and guide enrollment in future gene therapy trials.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Rachita Yadav
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Dadi Gao
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Lucy Norcliffe-Kaufmann
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Susan Slaugenhaupt
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| | - Horacio Kaufmann
- New York University School of Medicine (J.-A.P., L.N.-K., H.K.), New York, NY; and Massachusetts General Hospital Research Institute (R.Y., D.G., S.S), Boston
| |
Collapse
|
6
|
Yu YK, Tu DP, Shi XL, Liu Z, Fan X, Xu C. Conservative Treatment or Surgical Treatment: A Case Report and Literature Review of Multiple Fractures of the Lower Extremities in a Child with Insensitivity to Pain. Orthop Surg 2020; 12:1010-1015. [PMID: 32307926 PMCID: PMC7307248 DOI: 10.1111/os.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 11/27/2022] Open
Abstract
Congenital pain insensitivity is a rare genetic disease and its clinical manifestations are many. In orthopaedics, common complications of this disease include painless fracture and Charcot's arthropathy. We followed up a case of multiple fractures of the lower extremity in two years, during which time he came to the clinic for five painless fractures of the lower extremity in a total of six parts. A mutation was found on the NTKRI gene (chr1:156813923(hg19), NM_001007792.1: c.1221938C > T). We have developed a combination of surgery and conservative treatments for his condition, focusing on the mental state of the child and considering comprehensive treatment to be the best option for this type of patient. Occult fractures caused by pain insensitivity are often treated only as fractures, however their complications require routine examination and cleaning, suitable protective shoes, splint fixation, stretching, guided exercise planning, and early treatment of injuries. Due to the risk of fracture in the future, it is important that parents pay attention to the behavior and psychology of the child, such as not letting the child participate in exercise with a risk of injury, protective measures while playing, engaging in psychological counseling, and inducing interest in mental activity. These interventions will play a very important role in preventing the recurrence of fracture.
Collapse
Affiliation(s)
- Yi-Kang Yu
- Zhejiang Chinese Medical University, Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang, China.,Department of Orthopaedics, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Dong-Peng Tu
- Zhejiang Chinese Medical University, Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiao-Lin Shi
- Department of Orthopaedics, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| | - Zheng Liu
- Zhejiang Chinese Medical University, Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang, China
| | - Xin Fan
- Zhejiang Chinese Medical University, Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang, China
| | - Chao Xu
- Zhejiang Chinese Medical University, Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang, China.,Department of Orthopaedics, Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
7
|
Li H, Yang H, Lv N, Ma C, Li J, Shang Q. Whole exome sequencing and methylation‑specific multiplex ligation‑dependent probe amplification applied to identify Angelman syndrome due to paternal uniparental disomy in two unrelated patients. Mol Med Rep 2019; 20:1178-1186. [PMID: 31173236 PMCID: PMC6625451 DOI: 10.3892/mmr.2019.10339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/17/2019] [Indexed: 12/29/2022] Open
Abstract
Angelman syndrome (AS) is a congenital neuro-developmental disorder typically occurring due to functional defects of the UBE3A gene caused by uniparental disomy (UPD), translocation or single gene mutation. UBE3A gene exhibits imprinting expression, and only maternal inherited alleles express functional UBE3A protein in the brain. The common method to diagnose AS is single nucleotide polymorphism array or methylation‑specific multiplex ligation‑dependent probe amplification (MS‑MLPA). In recent years, whole exome sequencing (WES) has been increasingly used in the genetic diagnosis of a variety of indications, exhibiting great advantages as a comprehensive and unbiased testing method. In the present study, the cases of two unrelated patients with Robertsonian‑like translocation in chromosome 15, namely 45,XX,der(15;15)(q10;q10) and 45,XY,der(15;15)(q10;q10), are reported. The first case was diagnosed with AS by WES and validated by Sanger sequencing. In contrast to 42.84% homozygous variants on all chromosomes, 92.69% homozygosity variants were observed on chromosome 15. A homozygous stretch identifier was applied and identified a homozygous region across the entire chromosome 15. Sanger sequencing was used to further determine the subtype and confirm that two homozygous variants on chromosome 15 with low allele frequency (<0.01) were derived only from the father and not from the mother, thereby indicating a paternal UPD case, classified as isodisomy. MS‑MLPA results of the other AS patient with the same karyotype indicated that he had a high possibility of paternal UPD at chromosome 15. Taken together, the current study suggested the potential application of WES in detecting and facilitating the diagnosis of UPD.
Collapse
Affiliation(s)
- Haibei Li
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Haiqi Yang
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, Guangdong 518060, P.R. China
| | - Nan Lv
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Caiyun Ma
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Jingjie Li
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| | - Qing Shang
- Department of Pediatrics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450053, P.R. China
| |
Collapse
|
8
|
Gucev Z, Tasic V, Bogevska I, Laban N, Saveski A, Polenakovic M, Plaseska-Karanfilska D, Komlosi K, Winter J, Schweiger S, Nishimura G, Spranger J, Bartsch O. Heterotopic ossifications and Charcot joints: Congenital insensitivity to pain with anhidrosis (CIPA) and a novel NTRK1 gene mutation. Eur J Med Genet 2019; 63:103613. [PMID: 30677517 DOI: 10.1016/j.ejmg.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 10/27/2022]
Abstract
Congenital insensitivity to pain with anhidrosis (CIPA), also known as hereditary sensory and autonomic neuropathy type IV (HSAN-IV), is a rare and severe autosomal recessive disorder. We report on an adult female patient whose clinical findings during childhood were not recognized as CIPA. There was neither complete anhidrosis nor a recognizable sensitivity to heat. Tumorlike swellings of many joints and skeletal signs of Charcot neuropathy developed in adolescence which, together with a history of self-mutilation, led to a clinical suspicion of CIPA confirmed by identification of a novel homozygous variant c.1795G > T in the NTRK1 gene in blood lymphocytes. Both parents were heterozygous for the mutation. The variant predicts a premature stop codon (p.Gly599Ter) and thus represents a pathogenic variant; the first reported in the Southeastern European population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Katalin Komlosi
- Institute of Human Genetics, Medical Center of the Johannes Gutenberg University Mainz, University of Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, Medical Center of the Johannes Gutenberg University Mainz, University of Mainz, Germany
| | - Susann Schweiger
- Institute of Human Genetics, Medical Center of the Johannes Gutenberg University Mainz, University of Mainz, Germany
| | - Gen Nishimura
- Intractable Disease Center, Saitama Medical University Hospital, Saitama, Japan
| | | | - Oliver Bartsch
- Institute of Human Genetics, Medical Center of the Johannes Gutenberg University Mainz, University of Mainz, Germany
| |
Collapse
|
9
|
Zorina-Lichtenwalter K, Parisien M, Diatchenko L. Genetic studies of human neuropathic pain conditions: a review. Pain 2018; 159:583-594. [PMID: 29240606 PMCID: PMC5828382 DOI: 10.1097/j.pain.0000000000001099] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level.
Collapse
Affiliation(s)
| | - Marc Parisien
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|