1
|
Barbero AIS, Valenzuela I, Fernández-Alvarez P, Vazquez É, Cueto-Gonzalez AM, Lasa-Aranzasti A, Trujillano L, Masotto B, Arumí EG, Tizzano EF. New Insights Into the Spectrum of RASopathies: Clinical and Genetic Data in a Cohort of 121 Spanish Patients. Am J Med Genet A 2024:e63905. [PMID: 39484914 DOI: 10.1002/ajmg.a.63905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 11/03/2024]
Abstract
Noonan syndrome and related disorders are a group of well-known genetic conditions caused by dysregulation of the Ras/mitogen-activated protein kinase (RAS/MAPK) pathway. Because of the overlap of clinical and molecular features, they are now called RASopathies. In this study, we retrospectively analyzed the clinical data of 121 patients with a molecularly confirmed diagnosis of RASopathy, describing frequencies for clinical features in all organ systems as well as molecular data. The most common clinical diagnosis was Noonan Syndrome and the most frequently affected gene was PTPN11 followed by SOS1, RAF1, LZTR1, and RIT1. All patients had distinctive craniofacial features indicative of the RASopathy spectrum but we report some atypical features regarding craniofacial shape, such as craniosynostosis and microcephaly. We also describe uncommon clinical characteristics such as aortic dilation, multivalvular heart disease, abnormalities of the posterior fossa, and uterine congenital anomalies in female patients. Furthermore, the presence of multiple giant cell granulomas was observed specifically in patients with SOS1 variants. This comprehensive evaluation allows broadening the phenotypic spectrum of our population and their correlation with the genotype, which are essential to improve the recognition and the follow up of RASopathies as a multisystemic disease.
Collapse
Affiliation(s)
- Ana Isabel Sánchez Barbero
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Paula Fernández-Alvarez
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Élida Vazquez
- Department of Pediatric Radiology, Hospital Vall d'Hebron, Barcelona, Spain
| | - Anna Maria Cueto-Gonzalez
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Laura Trujillano
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Bárbara Masotto
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Elena García Arumí
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics and Rare Disease Unit, Vall Hebron Research Institute, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| |
Collapse
|
2
|
Sadayappan S. Proteomic Profiling: The Key to Unlocking the Complexities of Hypertrophic Cardiomyopathy. J Am Coll Cardiol 2024:S0735-1097(24)08461-4. [PMID: 39365225 DOI: 10.1016/j.jacc.2024.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Sakthivel Sadayappan
- Department of Cellular and Molecular Medicine, Sarver Heart Center, Molecular Cardiovascular Research Program, University of Arizona College of Medicine, Tucson, Arizona, USA.
| |
Collapse
|
3
|
Camiña-Conforto G, Ivars M, Sarquella-Brugada G, Valera-Dávila C, Salvador H, Rovira C, Baselga E. Phacomatosis pigmentokeratotica: Exploring extracutaneous comorbidities and topical therapy. Pediatr Dermatol 2024; 41:904-907. [PMID: 38621679 DOI: 10.1111/pde.15632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/06/2024] [Indexed: 04/17/2024]
Abstract
Phacomatosis pigmentokeratotica (PPK) is a RASopathy characterized by the presence of a sebaceous nevus and a papular speckled lentiginous nevus. This case report highlights the associated extracutaneous comorbidities, including life-threatening arrhythmia, and introduces topical rapamycin as a potential therapeutic avenue for sebaceous nevus in PPK patients.
Collapse
Affiliation(s)
| | - Marta Ivars
- Department of Dermatology, Inherited Cardiac Diseases and Sudden Death Unit, Barcelona, Spain
| | | | - Carlos Valera-Dávila
- Department of Neurology, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Héctor Salvador
- Department of Pediatric Oncology, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Carlota Rovira
- Department of Pathology, Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Inherited Cardiac Diseases and Sudden Death Unit, Barcelona, Spain
| |
Collapse
|
4
|
Faienza MF, Meliota G, Mentino D, Ficarella R, Gentile M, Vairo U, D’amato G. Cardiac Phenotype and Gene Mutations in RASopathies. Genes (Basel) 2024; 15:1015. [PMID: 39202376 PMCID: PMC11353738 DOI: 10.3390/genes15081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Cardiac involvement is a major feature of RASopathies, a group of phenotypically overlapping syndromes caused by germline mutations in genes encoding components of the RAS/MAPK (mitogen-activated protein kinase) signaling pathway. In particular, Noonan syndrome (NS) is associated with a wide spectrum of cardiac pathologies ranging from congenital heart disease (CHD), present in approximately 80% of patients, to hypertrophic cardiomyopathy (HCM), observed in approximately 20% of patients. Genotype-cardiac phenotype correlations are frequently described, and they are useful indicators in predicting the prognosis concerning cardiac disease over the lifetime. The aim of this review is to clarify the molecular mechanisms underlying the development of cardiac diseases associated particularly with NS, and to discuss the main morphological and clinical characteristics of the two most frequent cardiac disorders, namely pulmonary valve stenosis (PVS) and HCM. We will also report the genotype-phenotype correlation and its implications for prognosis and treatment. Knowing the molecular mechanisms responsible for the genotype-phenotype correlation is key to developing possible targeted therapies. We will briefly address the first experiences of targeted HCM treatment using RAS/MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giovanni Meliota
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Donatella Mentino
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Romina Ficarella
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Mattia Gentile
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Ugo Vairo
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Gabriele D’amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| |
Collapse
|
5
|
Gazzin A, Fornari F, Niceta M, Leoni C, Dentici ML, Carli D, Villar AM, Calcagni G, Banaudi E, Massuras S, Cardaropoli S, Airulo E, Daniele P, Monda E, Limongelli G, Riggi C, Zampino G, Digilio MC, De Luca A, Tartaglia M, Ferrero GB, Mussa A. Defining the variant-phenotype correlation in patients affected by Noonan syndrome with the RAF1:c.770C>T p.(Ser257Leu) variant. Eur J Hum Genet 2024; 32:964-971. [PMID: 38824260 PMCID: PMC11291835 DOI: 10.1038/s41431-024-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the major contributor to morbidity and mortality in Noonan syndrome (NS). Gain-of-function variants in RAF1 are associated with high prevalence of HCM. Among these, NM_002880.4:c.770C > T, NP_002871.1:p.(Ser257Leu) accounts for approximately half of cases and has been reported as associated with a particularly severe outcome. Nevertheless, comprehensive studies on cases harboring this variant are missing. To precisely define the phenotype associated to the RAF1:c.770C > T, variant, an observational retrospective analysis on patients carrying the c.770C > T variant was conducted merging 17 unpublished patients and literature-derived ones. Data regarding prenatal findings, clinical features and cardiac phenotypes were collected to provide an exhaustive description of the associated phenotype. Clinical information was collected in 107 patients. Among them, 92% had HCM, mostly diagnosed within the first year of life. Thirty percent of patients were preterm and 47% of the newborns was admitted in a neonatal intensive care unit, mainly due to respiratory complications of HCM and/or pulmonary arterial hypertension. Mortality rate was 13%, mainly secondary to HCM-related complications (62%) at the average age of 7.5 months. Short stature had a prevalence of 91%, while seizures and ID of 6% and 12%, respectively. Two cases out of 75 (3%) developed neoplasms. In conclusion, patients with the RAF1:c.770C > T pathogenic variant show a particularly severe phenotype characterized by rapidly progressive neonatal HCM and high mortality rate suggesting the necessity of careful monitoring and early intervention to prevent or slow down the progression of HCM.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
- Clinical Pediatric Genetics Unit, Regina Margherita Children's Hospital, Turin, Italy
| | - Federico Fornari
- Postgraduate School of Pediatrics, University of Turin, Turin, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, 00146, Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Diana Carli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Anna Maria Villar
- Cardiology Department, Regina Margherita Children's Hospital, Turin, Italy
| | - Giulio Calcagni
- Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Banaudi
- Cardiology Department, Regina Margherita Children's Hospital, Turin, Italy
| | - Stefania Massuras
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Elena Airulo
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paola Daniele
- Medical Genetics Unit, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples, Italy
| | - Chiara Riggi
- Cardiology Department, Regina Margherita Children's Hospital, Turin, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Alessandro De Luca
- Medical Genetics Unit, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital IRCCS, 00146, Rome, Italy
| | | | - Alessandro Mussa
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
- Clinical Pediatric Genetics Unit, Regina Margherita Children's Hospital, Turin, Italy.
| |
Collapse
|
6
|
Waheed‐Ullah Q, Wilsdon A, Abbad A, Rochette S, Bu'Lock F, Hitz M, Dombrowsky G, Cuello F, Brook JD, Loughna S. Effect of deletion of the protein kinase PRKD1 on development of the mouse embryonic heart. J Anat 2024; 245:70-83. [PMID: 38419169 PMCID: PMC11161829 DOI: 10.1111/joa.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly, with an overall incidence of approximately 1% in the United Kingdom. Exome sequencing in large CHD cohorts has been performed to provide insights into the genetic aetiology of CHD. This includes a study of 1891 probands by our group in collaboration with others, which identified three novel genes-CDK13, PRKD1, and CHD4, in patients with syndromic CHD. PRKD1 encodes a serine/threonine protein kinase, which is important in a variety of fundamental cellular functions. Individuals with a heterozygous mutation in PRKD1 may have facial dysmorphism, ectodermal dysplasia and may have CHDs such as pulmonary stenosis, atrioventricular septal defects, coarctation of the aorta and bicuspid aortic valve. To obtain a greater appreciation for the role that this essential protein kinase plays in cardiogenesis and CHD, we have analysed a Prkd1 transgenic mouse model (Prkd1em1) carrying deletion of exon 2, causing loss of function. High-resolution episcopic microscopy affords detailed morphological 3D analysis of the developing heart and provides evidence for an essential role of Prkd1 in both normal cardiac development and CHD. We show that homozygous deletion of Prkd1 is associated with complex forms of CHD such as atrioventricular septal defects, and bicuspid aortic and pulmonary valves, and is lethal. Even in heterozygotes, cardiac differences occur. However, given that 97% of Prkd1 heterozygous mice display normal heart development, it is likely that one normal allele is sufficient, with the defects seen most likely to represent sporadic events. Moreover, mRNA and protein expression levels were investigated by RT-qPCR and western immunoblotting, respectively. A significant reduction in Prkd1 mRNA levels was seen in homozygotes, but not heterozygotes, compared to WT littermates. While a trend towards lower PRKD1 protein expression was seen in the heterozygotes, the difference was only significant in the homozygotes. There was no compensation by the related Prkd2 and Prkd3 at transcript level, as evidenced by RT-qPCR. Overall, we demonstrate a vital role of Prkd1 in heart development and the aetiology of CHD.
Collapse
Affiliation(s)
- Qazi Waheed‐Ullah
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Anna Wilsdon
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Aseel Abbad
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Sophie Rochette
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Frances Bu'Lock
- East Midlands Congenital Heart CentreUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - Marc‐Phillip Hitz
- Institute of Medical GeneticsCarl von Ossietzky University OldenburgOldenburgGermany
| | - Gregor Dombrowsky
- Institute of Medical GeneticsCarl von Ossietzky University OldenburgOldenburgGermany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research CenterUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/LübeckUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - J. David Brook
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
7
|
Fuentes-Mateos R, García-Navas R, Fernández-Infante C, Hernández-Cano L, Calzada-Nieto N, Juan AOS, Guerrero C, Santos E, Fernández-Medarde A. Combined HRAS and NRAS ablation induces a RASopathy phenotype in mice. Cell Commun Signal 2024; 22:332. [PMID: 38886790 PMCID: PMC11184836 DOI: 10.1186/s12964-024-01717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND HRASKO/NRASKO double knockout mice exhibit exceedingly high rates of perinatal lethality due to respiratory failure caused by a significant lung maturation delay. The few animals that reach adulthood have a normal lifespan, but present areas of atelectasis mixed with patches of emphysema and normal tissue in the lung. METHODS Eight double knockout and eight control mice were analyzed using micro-X-ray computerized tomography and a Small Animal Physiological Monitoring system. Tissues and samples from these mice were analyzed using standard histological and Molecular Biology methods and the significance of the results analyzed using a Student´s T-test. RESULTS The very few double knockout mice surviving up to adulthood display clear craniofacial abnormalities reminiscent of those seen in RASopathy mouse models, as well as thrombocytopenia, bleeding anomalies, and reduced platelet activation induced by thrombin. These surviving mice also present heart and spleen hyperplasia, and elevated numbers of myeloid-derived suppressor cells in the spleen. Mechanistically, we observed that these phenotypic alterations are accompanied by increased KRAS-GTP levels in heart, platelets and primary mouse embryonic fibroblasts from these animals. CONCLUSIONS Our data uncovers a new, previously unidentified mechanism capable of triggering a RASopathy phenotype in mice as a result of the combined removal of HRAS and NRAS.
Collapse
Affiliation(s)
- Rocío Fuentes-Mateos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Present address: Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Present address: Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Nuria Calzada-Nieto
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Andrea Olarte-San Juan
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
8
|
Bakalakos A, Monda E, Elliott PM. The Diagnostic and Therapeutic Implications of Phenocopies and Mimics of Hypertrophic Cardiomyopathy. Can J Cardiol 2024; 40:754-765. [PMID: 38447917 DOI: 10.1016/j.cjca.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common myocardial disease defined by increased left ventricular wall thickness unexplained by loading conditions. HCM frequently is caused by pathogenic variants in sarcomeric protein genes, but several other syndromic, metabolic, infiltrative, and neuromuscular diseases can result in HCM phenocopies. This review summarizes the current understanding of these HCM mimics, highlighting their importance across the life course. The central role of a comprehensive, multiparametric diagnostic approach and the potential of precision medicine in tailoring treatment strategies are emphasized.
Collapse
Affiliation(s)
- Athanasios Bakalakos
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Emanuele Monda
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Department of Translational Medical Sciences, Inherited and Rare Cardiovascular Diseases, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Perry Mark Elliott
- Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Li Z, Lu J, Ruan X, Wu Y, Zhao J, Jiao X, Sun J, Sun K. Exposure to volatile organic compounds induces cardiovascular toxicity that may involve DNA methylation. Toxicology 2024; 501:153705. [PMID: 38070821 DOI: 10.1016/j.tox.2023.153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Volatile organic compounds (VOCs) are common air pollutants and water contaminants. We previously found maternal exposure to VOCs was associated with offspring congenital heart disease (CHD). However, little information is available about the effects of VOCs on cardiovascular development at embryonic stage and the underlying mechanism remains unclear. In this study, we aimed to investigate the effects of a mixture of six VOCs on cardiovascular development in zebrafish embryos. Embryos were exposed to different concentrations of VOCs mixture (32 mg/L, 64 mg/L and 128 mg/L) for 96 h, cardiovascular abnormalities including elongated heart shape, increased distance between sinus venosus and bulbus arteriosus, slowed circulation and altered heart rate were observed in a dose- and time-dependent manner. Meanwhile, VOCs exposure increased global DNA methylation levels in embryos. Analysis identified hundreds of differentially methylated sites and the enrichment of differentially methylated sites on cardiovascular development. Two differentially methylated-associated genes involved in MAPK pathway, hgfa and ntrk1, were identified to be the potential genes mediating the effects of VOCs. By enzyme-linked immunosorbent assay, altered human serum hgf and ntrk1 levels were detected in abnormal pregnancies exposed to higher VOCs levels with fetal CHD. For the first time, our study revealed exposure to VOCs induced severe cardiovascular abnormalities in zebrafish embryos. The toxicity might result from alterations in DNA methylation and corresponding expression levels of genes involved in MAPK pathway. Our study provides important information for the risk of VOCs exposure on embryonic cardiovascular development.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieru Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Children's Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuehua Ruan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yurong Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianting Jiao
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Scorrano G, David E, Calì E, Chimenz R, La Bella S, Di Ludovico A, Di Rosa G, Gitto E, Mankad K, Nardello R, Mangano GD, Leoni C, Ceravolo G. The Cardiofaciocutaneous Syndrome: From Genetics to Prognostic-Therapeutic Implications. Genes (Basel) 2023; 14:2111. [PMID: 38136934 PMCID: PMC10742720 DOI: 10.3390/genes14122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is one of the rarest RASopathies characterized by multiple congenital ectodermal, cardiac and craniofacial abnormalities with a mild to severe ocular, gastrointestinal and neurological involvement. It is an autosomal dominant syndrome, with complete penetrance, caused by heterozygous pathogenic variants in the genes BRAF, MAP2K1/MEK1, MAP2K2/MEK2, KRAS or, rarely, YWHAZ, all part of the RAS-MAPK pathway. This pathway is a signal transduction cascade that plays a crucial role in normal cellular processes such as cell growth, proliferation, differentiation, survival, metabolism and migration. CFC syndrome overlaps with Noonan syndrome, Costello syndrome, neurofibromatosis type 1 and Legius syndrome, therefore making the diagnosis challenging. Neurological involvement in CFC is more severe than in other RASopathies. Phenotypic variability in CFC patients is related to the specific gene affected, without a recognized genotype-phenotype correlation for distinct pathogenic variants. Currently, there is no specific treatment for CFC syndrome. Encouraging zebrafish model system studies suggested that, in the future, MEK inhibitors could be a suitable treatment of progressive phenotypes of CFC in children. A multidisciplinary care is necessary for appropriate medical management.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Emanuele David
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Elisa Calì
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| | - Roberto Chimenz
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy;
| | - Saverio La Bella
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Armando Di Ludovico
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98122 Messina, Italy;
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK;
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Giuseppe Donato Mangano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgia Ceravolo
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| |
Collapse
|
11
|
Hong KN, Eshraghian EA, Arad M, Argirò A, Brambatti M, Bui Q, Caspi O, de Frutos F, Greenberg B, Ho CY, Kaski JP, Olivotto I, Taylor MRG, Yesso A, Garcia-Pavia P, Adler ED. International Consensus on Differential Diagnosis and Management of Patients With Danon Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1628-1647. [PMID: 37821174 DOI: 10.1016/j.jacc.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023]
Abstract
Danon disease is a rare X-linked autophagic vacuolar cardioskeletal myopathy associated with severe heart failure that can be accompanied with extracardiac neurologic, skeletal, and ophthalmologic manifestations. It is caused by loss of function variants in the LAMP2 gene and is among the most severe and penetrant of the genetic cardiomyopathies. Most patients with Danon disease will experience symptomatic heart failure. Male individuals generally present earlier than women and die of either heart failure or arrhythmia or receive a heart transplant by the third decade of life. Herein, the authors review the differential diagnosis of Danon disease, diagnostic criteria, natural history, management recommendations, and recent advances in treatment of this increasingly recognized and extremely morbid cardiomyopathy.
Collapse
Affiliation(s)
- Kimberly N Hong
- University of California-San Diego, San Diego, California, USA
| | | | - Michael Arad
- Leviev Heart Center, Sheba Hospital and Tel Aviv University, Tel Aviv, Israel
| | - Alessia Argirò
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Quan Bui
- University of California-San Diego, San Diego, California, USA
| | - Oren Caspi
- Rambam Medical Centre and B. Rappaport Faculty of Medicine, Technion Medical School, Haifa, Israel
| | - Fernando de Frutos
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
| | - Barry Greenberg
- University of California-San Diego, San Diego, California, USA
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juan Pablo Kaski
- Great Ormond Street Hospital and University College London, London, United Kingdom
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Abigail Yesso
- Division of Cardiology/Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain.
| | - Eric D Adler
- University of California-San Diego, San Diego, California, USA.
| |
Collapse
|
12
|
Monda E, Bakalakos A, Rubino M, Verrillo F, Diana G, De Michele G, Altobelli I, Lioncino M, Perna A, Falco L, Palmiero G, Elliott PM, Limongelli G. Targeted Therapies in Pediatric and Adult Patients With Hypertrophic Heart Disease: From Molecular Pathophysiology to Personalized Medicine. Circ Heart Fail 2023; 16:e010687. [PMID: 37477018 DOI: 10.1161/circheartfailure.123.010687] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
Hypertrophic cardiomyopathy is a myocardial disease defined by an increased left ventricular wall thickness not solely explained by abnormal loading conditions. It is often genetically determined, with sarcomeric gene mutations accounting for around 50% of cases. Several conditions, including syndromic, metabolic, infiltrative, and neuromuscular diseases, may present with left ventricular hypertrophy, mimicking the hypertrophic cardiomyopathy phenotype but showing a different pathophysiology, clinical course, and outcome. Despite being rare, they are collectively responsible for a large proportion of patients presenting with hypertrophic heart disease, and their timely diagnosis can significantly impact patients' management. The understanding of disease pathophysiology has advanced over the last few years, and several therapeutic targets have been identified, leading to a new era of tailored treatments applying to different etiologies associated with left ventricular hypertrophy. This review aims to provide an overview of the existing and emerging therapies for the principal causes of hypertrophic heart disease, discussing the potential impact on patients' management and clinical outcome.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Athanasios Bakalakos
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Gaetano Diana
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Gianantonio De Michele
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Ippolita Altobelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Alessia Perna
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Luigi Falco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
| | - Perry M Elliott
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy (E.M., M.R., F.V., G.D., G.D.M., I.A., M.L., A.P., L.F., G.P., G.L.)
- Institute of Cardiovascular Sciences, University College London, United Kingdom (E.M., A.B., P.M.E., G.L.)
| |
Collapse
|
13
|
Monda E, Prosnitz A, Aiello R, Lioncino M, Norrish G, Caiazza M, Drago F, Beattie M, Tartaglia M, Russo MG, Colan SD, Calcagni G, Gelb BD, Kaski JP, Roberts AE, Limongelli G. Natural History of Hypertrophic Cardiomyopathy in Noonan Syndrome With Multiple Lentigines. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:350-358. [PMID: 37199218 DOI: 10.1161/circgen.122.003861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND We aimed to examine clinical features and outcomes of consecutive molecularly characterized patients with Noonan syndrome with multiple lentigines and hypertrophic cardiomyopathy. METHODS A retrospective, longitudinal multicenter cohort of consecutive children and adults with a genetic diagnosis of Noonan syndrome with multiple lentigines and hypertrophic cardiomyopathy between 2002 and 2019 was assembled. We defined a priori 3 different patterns of left ventricular remodeling during follow-up: (1) an increase in ≥15% of the maximal left ventricular wall thickness (MLVWT), both in mm and z-score (progression); (2) a reduction ≥15% of the MLVWT, both in mm and z-score (absolute regression); (3) a reduction ≥15% of the MLVWT z-score with a stable MLVWT in mm (relative regression). The primary study end point was a composite of cardiovascular death, heart transplantation, and appropriate implantable cardioverter defibrillator-shock. RESULTS The cohort comprised 42 patients with Noonan syndrome with multiple lentigines and hypertrophic cardiomyopathy, with a median age at diagnosis of 3.5 (interquartile range, 0.2-12.3) years. Freedom from primary end point was 92.7% (95% CI, 84.7%-100%) 1 year after presentation and 80.9% (95% CI, 70.1%-90.7%) at 5 years. Patients with MLVWT z-score >13.7 showed reduced survival compared with those with <13.7. During a median follow-up of 3.7 years (interquartile range, 2.6-7.9), absolute regression was the most common type of left ventricular remodeling (n=9, 31%), followed by progression (n=6, 21%), and relative regression (n=6, 21%). CONCLUSIONS These findings provide insights into the natural history of left ventricular hypertrophy, and can help inform clinicians regarding risk stratification and clinical outcomes in patients with Noonan syndrome with multiple lentigines and hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy (E.M., R.A., M.L., M.C., M.G.R., G.L.)
| | - Aaron Prosnitz
- Congenital Heart Center, Levine Children's Hospital, Atrium Health, Charlotte, NC (A.P.)
| | - Rossella Aiello
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy (E.M., R.A., M.L., M.C., M.G.R., G.L.)
| | - Michele Lioncino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy (E.M., R.A., M.L., M.C., M.G.R., G.L.)
| | - Gabrielle Norrish
- Centre for Pediatric Inherited and Rare Cardiovascular Disease, Institute of Cardiovascular Science, University College London, United Kingdom (G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (G.N., J.P.K.)
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy (E.M., R.A., M.L., M.C., M.G.R., G.L.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy (F.D., G.C.)
| | - Meaghan Beattie
- Department of Cardiology and Division of Genetics, Department of Pediatrics, Boston Children's Hospital, MA (M.B., S.D.C., A.E.R.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy (M.T.)
| | - Maria Giovanna Russo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy (E.M., R.A., M.L., M.C., M.G.R., G.L.)
| | - Steven D Colan
- Department of Cardiology and Division of Genetics, Department of Pediatrics, Boston Children's Hospital, MA (M.B., S.D.C., A.E.R.)
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy (F.D., G.C.)
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY (B.D.G.)
| | - Juan Pablo Kaski
- Centre for Pediatric Inherited and Rare Cardiovascular Disease, Institute of Cardiovascular Science, University College London, United Kingdom (G.N., J.P.K.)
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom (G.N., J.P.K.)
| | - Amy E Roberts
- Department of Cardiology and Division of Genetics, Department of Pediatrics, Boston Children's Hospital, MA (M.B., S.D.C., A.E.R.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy (E.M., R.A., M.L., M.C., M.G.R., G.L.)
- Institute of Cardiovascular Sciences, University College of London and St Bartholomew's Hospital, United Kingdom (G.L.)
| |
Collapse
|