1
|
A novel near-infrared viscosity probe based on synergistic effect of AIE property and molecular rotors for mitophagy imaging during liver injury. Anal Chim Acta 2021; 1187:339146. [PMID: 34753564 DOI: 10.1016/j.aca.2021.339146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 11/21/2022]
Abstract
Mitophagy, a specialized form of autophagy, holds the key to cellular metabolism and physiology. Viscosity is a significant marker for visualization of the mitophagy process in real-time. Hence, development of well-performing viscosity probe is beneficial to study mitophagy-related dynamic physiological and pathological processes. Here, a new strategy was proposed by combination of AIE property and molecular rotors to design novel viscosity probe. The probe named TPA-Py was obtained by Knoevenagel condensation reaction of AIE unit and pyridine salt, which giving the probe excellent near-infrared emission, good water-solubility and mitochondrial targeting ability. Most importantly, TPA-Py owns two rotatable parts of triphenylamine and double bond, enabling the probe to equip with AIE property and sensitive recognition units for viscosity. With the environmental viscosity increasing, the rotation of the molecular rotor and the AIE unit is restricted effectively, the probe displayed strong fluorescence. Then, TPA-Py was successfully employed for monitoring the mitophagy process in A549 cells by imaging viscosity alterations. As mitophagy constitutes an important consideration in the pathogenesis of drug-induced liver injury, TPA-Py was also applied to explore the variation of viscosity in production and remediation pathways of APAP-induced liver injury. These results demonstrated that TPA-Py was a highly sensitive viscosity probe which holds great potential of biological applications.
Collapse
|
2
|
Karadoğan B, Erden İ, Berber S. Asymmetric phthalocyanine compounds in the structure D-π-A containing cyano groups: Design, synthesis and dye-sensitized solar cell applications. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, asymmetric zinc phthalocyanine compounds with Donor-π-Anchor (D-π-A) property that enable the movement of electrons in molecular structure in one direction were synthesized. Phthalocyanines were designed to ensure electron mobility within the molecule and to facilitate the transfer of electrons to the TiO2 layer. The synthesized asymmetric zinc phthalocyanines (ZnPc-1 and ZnPc-2) are molecules with three donor biphenyls and one anchor aldehyde group and three acceptor/anchor cyano and one anchor aldehyde group, respectively. The effect of biphenyl and cyano groups on cell efficiency with aldehyde anchor group was investigated. The structure of the synthesized phthalocyanines was characterized by Fourier Transform Infrared Spectrometry (FTIR), Mass Spectrometry (MS), UV-vis, Fluorescence spectroscopy. The experimentally calculated optical band gap values were supported by the values found by Density Functional Theory (DFT) calculations. dye sensitive solar cells were measured and the efficiencies were evaluated with reference to the N719 standard dye. In the solar cell measurements of the designed phthalocyanines, the structure containing the cyano group has been given a higher photovoltaic cell thanks to the higher short circuit photo-current (Jsc). In this way, the highest power conversion efficiency value was achieved among the cyano group molecules.
Collapse
Affiliation(s)
- Betül Karadoğan
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - İbrahim Erden
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Savaş Berber
- Department of Physics, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
3
|
Shi X, Sung SHP, Lee MMS, Kwok RTK, Sung HHY, Liu H, Lam JWY, Williams ID, Liu B, Tang BZ. A lipophilic AIEgen for lipid droplet imaging and evaluation of the efficacy of HIF-1 targeting drugs. J Mater Chem B 2020; 8:1516-1523. [DOI: 10.1039/c9tb02848j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A lipid-droplet-specific AIEgen was used to evaluate the inhibitory efficacy of HIF-1-targeting drugs by assessing lipid-droplet levels.
Collapse
|
4
|
Synthesis of phthalocyanines with donor–acceptor properties and their applications to dye-sensitized solar cell. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00778-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
El-Sayed HA, Morsy HA. A facile synthesis of highly fluorescent pyrido[2,3-d]pyrimidines and 1,8-naphthyridines via oxazine transformation and enaminic addition reactions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1548-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Ooyama Y, Furue K, Enoki T, Kanda M, Adachi Y, Ohshita J. Development of type-I/type-II hybrid dye sensitizer with both pyridyl group and catechol unit as anchoring group for type-I/type-II dye-sensitized solar cell. Phys Chem Chem Phys 2018; 18:30662-30676. [PMID: 27790658 DOI: 10.1039/c6cp06513a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A type-I/type-II hybrid dye sensitizer with a pyridyl group and a catechol unit as the anchoring group has been developed and its photovoltaic performance in dye-sensitized solar cells (DSSCs) is investigated. The sensitizer has the ability to adsorb on a TiO2 electrode through both the coordination bond at Lewis acid sites and the bidentate binuclear bridging linkage at Brønsted acid sites on the TiO2 surface, which makes it possible to inject an electron into the conduction band of the TiO2 electrode by the intramolecular charge-transfer (ICT) excitation (type-I pathway) and by the photoexcitation of the dye-to-TiO2 charge transfer (DTCT) band (type-II pathway). It was found that the type-I/type-II hybrid dye sensitizer adsorbed on TiO2 film exhibits a broad photoabsorption band originating from ICT and DTCT characteristics. Here we reveal the photophysical and electrochemical properties of the type-I/type-II hybrid dye sensitizer bearing a pyridyl group and a catechol unit, along with its adsorption modes onto TiO2 film, and its photovoltaic performance in type-I/type-II DSSC, based on optical (photoabsorption and fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), density functional theory (DFT) calculation, FT-IR spectroscopy of the dyes adsorbed on TiO2 film, photocurrent-voltage (I-V) curves, incident photon-to-current conversion efficiency (IPCE) spectra, and electrochemical impedance spectroscopy (EIS) for DSSC.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Kensuke Furue
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Toshiaki Enoki
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Masahiro Kanda
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Yohei Adachi
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
7
|
Design and synthesis of organic sensitizers with enhanced anchoring stability in dye-sensitized solar cells. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
D-π-A dyes have received a special attention in the field of dye-sensitized solar cells (DSSCs). In this kind of molecules, the acceptor group (A) generally acts as an anchor, enabling the adsorption of the dye onto the metal oxide substrate (TiO2) and providing a good electron injection. The search for new anchors represents a critical factor for the development of improved DSSCs and in recent years has been a very active research field. This mini-review focuses especially on our work on pyridine-derived anchoring groups for D-π-A dyes, with a special regard on the preparation and characterization of three different families of dyes and a critical evaluation of their stability and efficiency.
Collapse
|
8
|
Ooyama Y, Kanda M, EnoKi T, Adachi Y, Ohshita J. Synthesis, optical and electrochemical properties, and photovoltaic performance of a panchromatic and near-infrared (D)2–π–A type BODIPY dye with pyridyl group or cyanoacrylic acid. RSC Adv 2017. [DOI: 10.1039/c7ra00799j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(D)2–π–A type BODIPY dyes bearing a pyridyl group or cyanoacrylic acid group and two diphenylamine–thienylcarbazole moieties which possess near-infrared adsorption ability as well as panchromatic adsorption ability, have been developed.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Masahiro Kanda
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Toshiaki EnoKi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Yohei Adachi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Joji Ohshita
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
9
|
Ooyama Y, Yamaguchi N, Ohshita J, Harima Y. Impact of the molecular structure and adsorption mode of D-π-A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO 2 surface. Phys Chem Chem Phys 2016; 18:32992-32998. [PMID: 27886308 DOI: 10.1039/c6cp07386g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-π-A dyes NI-4 bearing a pyridyl group, YNI-1 bearing two pyridyl groups and YNI-2 bearing two thienylpyridyl groups as the anchoring group on the TiO2 surface have been developed as dye sensitizers for dye-sensitized solar cells (DSSCs), where NI-4 and YNI-2 can adsorb onto the TiO2 electrode through the formation of the coordinate bond between the pyridyl group of the dye and the Lewis acid site (exposed Tin+ cations) on the TiO2 surface, but YNI-1 is predominantly adsorbed on the TiO2 electrode through the formation of the hydrogen bond between the pyridyl group of the dye and the Brønsted acid sites (surface-bound hydroxyl groups, Ti-OH) on the TiO2 surface. The difference in the dye-adsorption mode among the three dyes on the TiO2 surface has been investigated from the adsorption equilibrium constant (Kad) based on the Langmuir adsorption isotherms. It was found that the Kad values of YNI-1 and YNI-2 are higher than that of NI-4, and more interestingly, the Kad value of YNI-2 is higher than that of YNI-1. This work demonstrates that that for the D-π-A dye sensitizers with the pyridyl group as the anchoring group to the TiO2 surface the number of pyridyl groups and the dye-adsorption mode on the TiO2 electrode as well as the molecular structure of the dye sensitizer affect the Kad value for the adsorption of the dye to the TiO2 electrode, that is, resulting in a difference in the Kad value among the D-π-A dye sensitizers NI-4, YNI-1 and YNI-2.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Naoya Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| | - Yutaka Harima
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
10
|
Zhou Y, Li X, Li X, Chen J, Yu F, Hua J. The Effect of Pyridyl Nitrogen Atom Position in Pyrido[3,4-b]pyrazines in Donor-Acceptor-π-Acceptor Dyes on Absorption, Energy Levels, and Photovoltaic Performances of Dye-Sensitized Solar Cells. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201500451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Zhou
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals; East China University of Science and Technology; Shanghai 200237 China
| | - Xing Li
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals; East China University of Science and Technology; Shanghai 200237 China
| | - Xin Li
- Division of Theoretical Chemistry and Biology; School of Biotechnology; KTH Royal Institute of Technology; SE-10691 Stockholm Sweden
| | - Jue Chen
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals; East China University of Science and Technology; Shanghai 200237 China
| | - Fengtao Yu
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals; East China University of Science and Technology; Shanghai 200237 China
| | - Jianli Hua
- Key Laboratory for Advanced Materials; Institute of Fine Chemicals; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
11
|
Wu Z, Ma W, Meng S, Li X, Li J, Zou Q, Hua J, Tian H. New sensitizers containing amide moieties as electron-accepting and anchoring groups for dye-sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra04915j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three sensitizers with amide moieties as electron-accepting and anchoring groups were synthesized for dye-sensitized solar cells, in which the pyrimidine-trione-based sensitizer showed an efficiency of 3.9%.
Collapse
Affiliation(s)
- Zhifang Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai
- PR China
| | - Wei Ma
- Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- PR China
| | - Sheng Meng
- Institute of Physics
- Chinese Academy of Sciences
- Beijing 100190
- PR China
- Collaborative Innovation Center of Quantum Matter
| | - Xing Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai
- PR China
| | - Jing Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai
- PR China
| | - Qi Zou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- Shanghai University of Electric Power
- Shanghai 200090
- P. R. China
| | - Jianli Hua
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai
- PR China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai
- PR China
| |
Collapse
|
12
|
Ooyama Y, Uenaka K, Kamimura T, Ozako S, Kanda M, Koide T, Tani F. Dye-sensitized solar cell based on an inclusion complex of a cyclic porphyrin dimer bearing four 4-pyridyl groups and fullerene C60. RSC Adv 2016. [DOI: 10.1039/c6ra01131d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclic free-base porphyrin dimers linked by butadiyne or phenothiazine bearing four 4-pyridyl groups and their inclusion complexes with fullerene C60 have been applied to dye-sensitized solar cells as a new class of porphyrin dye sensitizers.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Koji Uenaka
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Takuya Kamimura
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Shuwa Ozako
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Masahiro Kanda
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Taro Koide
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
13
|
Meinhardt U, Lodermeyer F, Schaub TA, Kunzmann A, Dral PO, Sale AC, Hampel F, Guldi DM, Costa RD, Kivala M. N-Heterotriangulene chromophores with 4-pyridyl anchors for dye-sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra14799b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of N-heterotriangulenes decorated with 4-pyridyl anchors were synthesized and their performance in n-type TiO2- and ZnO-based dye-sensitized solar cells investigated.
Collapse
Affiliation(s)
- Ute Meinhardt
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Fabian Lodermeyer
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Tobias A. Schaub
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Andreas Kunzmann
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Pavlo O. Dral
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
| | - Anna Chiara Sale
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Frank Hampel
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Ruben D. Costa
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Milan Kivala
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg
- 91054 Erlangen
- Germany
| |
Collapse
|
14
|
Ooyama Y, Ohshita J. Development of D-π-A Dye Sensitizers with Azine Ring and Their Photovoltaic Performances of Dye-Sensitized Solar Cells. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University
| | | |
Collapse
|
15
|
Wu Z, Li X, Ågren H, Hua J, Tian H. Pyrimidine-2-carboxylic Acid as an Electron-Accepting and Anchoring Group for Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26355-26359. [PMID: 26581583 DOI: 10.1021/acsami.5b07690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report a new dye (INPA) adopting pyrimidine-2-carboxylic acid as an electron-accepting and anchoring group to be used in dye-sensitized solar cells. IR spectral analysis indicates that the anchoring group may form two coordination bonds with TiO2 and so facilitate the interaction between the anchoring group and TiO2. The INPA-based cell exhibits an overall conversion efficiency of 5.45%, which is considerably higher than that obtained with cyanoacrylic acid commonly used as the electron acceptor.
Collapse
Affiliation(s)
- Zhifang Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin Li
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , SE-10691 Stockholm, Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology , SE-10691 Stockholm, Sweden
| | - Jianli Hua
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
16
|
Molecular engineering of D-A-π-A dyes with 2-(1,1-dicyanomethylene)rhodanine as an electron-accepting and anchoring group for dye-sensitized solar cells. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Benzothiadiazole-based organic dyes with pyridine anchors for dye-sensitized solar cells: effect of donor on optical properties. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.04.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Ooyama Y, Uenaka K, Ohshita J. Development of D-π-A Fluorescent Dyes with a 3-Pyridyl Group as Electron-Withdrawing Anchoring Group for Dye-Sensitized Solar Cells. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Zhang L, Cole JM. Anchoring groups for dye-sensitized solar cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3427-55. [PMID: 25594514 DOI: 10.1021/am507334m] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The dyes in dye-sensitized solar cells (DSSCs) require one or more chemical substituents that can act as an anchor, enabling their adsorption onto a metal oxide substrate. This adsorption provides a means for electron injection, which is the process that initiates the electrical circuit in a DSSC. Understanding the structure of various DSSC anchors and the search for new anchors are critical factors for the development of improved DSSCs. Traditionally, carboxylic acid and cyanoacrylic acid groups are employed as dye anchors in DSSCs. In recent years, novel anchor groups have emerged, which make a larger pool of materials available for DSSC dyes, and their associated physical and chemical characteristics offer interesting effects at the interface between dye and metal oxide. This review focuses especially on the structural aspects of these novel dye anchors for TiO2-based DSSCs, including pyridine, phosphonic acid, tetracyanate, perylene dicarboxylic acid anhydride, 2-hydroxylbenzonitrile, 8-hydroxylquinoline, pyridine-N-oxide, hydroxylpyridium, catechol, hydroxamate, sulfonic acid, acetylacetanate, boronic acid, nitro, tetrazole, rhodanine, and salicylic acid substituents. We anticipate that further exploration and understanding of these new types of anchoring groups for TiO2 substrates will not only contribute to the development of advanced DSSCs, but also of quantum dot-sensitized solar cells, water splitting systems, and other self-assembled monolayer-based technologies.
Collapse
Affiliation(s)
- Lei Zhang
- Cavendish Laboratory, University of Cambridge , J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | | |
Collapse
|
20
|
Ooyama Y, Uenaka K, Ohshita J. Development of a functionally separated D–π-A fluorescent dye with a pyrazyl group as an electron-accepting group for dye-sensitized solar cells. Org Chem Front 2015. [DOI: 10.1039/c5qo00050e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A functionally separated D–π-A dye OUK-3 with a pyrazyl group as an electron-accepting group and a carboxyl group as an anchoring group has been newly developed as a photosensitizer for dye-sensitized solar cells.
Collapse
Affiliation(s)
- Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Koji Uenaka
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Joji Ohshita
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
21
|
Echeverry CA, Cotta R, Castro E, Ortiz A, Echegoyen L, Insuasty B. New organic dyes with high IPCE values containing two triphenylamine units as co-donors for efficient dye-sensitized solar cells. RSC Adv 2015. [DOI: 10.1039/c5ra07720f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New bis-TPA-based organic dyes for DSSCs showed high IPCE values dependent on π-conjugation.
Collapse
Affiliation(s)
- Carlos A. Echeverry
- Departamento de Química
- Facultad de Ciencias Naturales y Exactas
- Universidad del Valle
- A.A. 25360 Cali
- Colombia
| | - Robert Cotta
- Chemistry and Computer Science
- University of Texas at El Paso
- 79968-0519 El Paso
- United States
| | - Edison Castro
- Chemistry and Computer Science
- University of Texas at El Paso
- 79968-0519 El Paso
- United States
| | - Alejandro Ortiz
- Departamento de Química
- Facultad de Ciencias Naturales y Exactas
- Universidad del Valle
- A.A. 25360 Cali
- Colombia
| | - Luis Echegoyen
- Chemistry and Computer Science
- University of Texas at El Paso
- 79968-0519 El Paso
- United States
| | - Braulio Insuasty
- Departamento de Química
- Facultad de Ciencias Naturales y Exactas
- Universidad del Valle
- A.A. 25360 Cali
- Colombia
| |
Collapse
|
22
|
Urbani M, Grätzel M, Nazeeruddin MK, Torres T. Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev 2014; 114:12330-96. [PMID: 25495339 DOI: 10.1021/cr5001964] [Citation(s) in RCA: 545] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maxence Urbani
- Departamento de Química Orgánica, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
23
|
A comparison of carboxypyridine isomers as sensitizers for dye-sensitized solar cells: assessment of device efficiency and stability. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Verbitskiy EV, Slepukhin PA, Subbotina YO, Valova MS, Schepochkin AV, Cheprakova EM, Rusinov GL, Charushin VN. 2-amino-5-aryl- and 2-amino-5-hetaryl-3-cyano-6-(2-thienyl)pyridines as Organic Dyes for Dye-Sensitized Solar Cells: Synthesis, Quantum-Chemical Calculations, Spectral and Electrochemical Properties. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1536-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Ooyama Y, Uenaka K, Harima Y, Ohshita J. Development of D–π–A dyes with a pyrazine ring as an electron-withdrawing anchoring group for dye-sensitized solar cells. RSC Adv 2014. [DOI: 10.1039/c4ra03999h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|