Nguyen KT, Zhao Y. Engineered Hybrid Nanoparticles for On-Demand Diagnostics and Therapeutics.
Acc Chem Res 2015;
48:3016-25. [PMID:
26605438 DOI:
10.1021/acs.accounts.5b00316]
[Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Together with the simultaneous development of nanomaterials and molecular biology, the bionano interface brings about various applications of hybrid nanoparticles in nanomedicine. The hybrid nanoparticles not only present properties of the individual components but also show synergistic effects for specialized applications. Thus, the development of advanced hybrid nanoparticles for targeted and on-demand diagnostics and therapeutics of diseases has rapidly become a hot research topic in nanomedicine. The research focus is to fabricate novel classes of programmable hybrid nanoparticles that are precisely engineered to maximize drug concentrations in diseased cells, leading to enhanced efficacy and reduced side effects of chemotherapy for the disease treatment. In particular, the hybrid nanoparticle platforms can simultaneously target diseased cells, enable the location to be imaged by optical methods, and release therapeutic drugs to the diseased cells by command. This Account specially discusses the rational fabrication of integrated hybrid nanoparticles and their applications in diagnostics and therapeutics. For diagnostics applications, hybrid nanoparticles can be utilized as imaging agents that enable detailed visualization at the molecular level. By the use of suitable targeting ligands incorporated on the nanoparticles, targeted optical imaging may be feasible with improved performance. Novel imaging techniques such as multiphoton excitation and photoacoustic imaging using near-infrared light have been developed using the intrinsic properties of particular nanoparticles. The use of longer-wavelength excitation sources allows deeper penetration into the human body for disease diagnostics and at the same time reduces the adverse effects on normal tissues. Furthermore, multimodal imaging techniques have been achieved by combining several types of components in nanoparticles, offering higher accuracy and better spatial views, with the aim of detecting life-threatening diseases before symptoms appear. For therapeutics applications, various nanoparticle-based treatment methods such as photodynamic therapy, drug delivery, and gene delivery have been developed. The intrinsic ability of organic nanoparticles to generate reactive oxygen species has been utilized for photodynamic therapy, and mesoporous silica nanoparticles have been widely used for drug loading and controlled delivery. Herein, the development of controlled-release systems that can specifically deliver drug molecules to target cells and release then upon triggering is highlighted. By control of the release of loaded drug molecules at precise sites (e.g., cancer cells or malignant tumors), side effects of the drugs are minimized. This approach provides better control and higher efficacy of drugs in the human body. Future personalized medicine is also feasible through gene delivery methods. Specific DNA/RNA-carrying nanoparticles are able to deliver them to target cells to obtain desired properties. This development may create an evolution in current medicine, leading to more personalized healthcare systems that can reduce the population screening process and also the duration of drug evaluation. Furthermore, nanoparticles can be incorporated with various components that can be used for simultaneous diagnostics and therapeutics. These multifunctional theranostic nanoparticles enable real-time monitoring of treatment process for more efficient therapy.
Collapse