1
|
Wozniak JM, Li W, Governa P, Chen LY, Jadhav A, Dongre A, Forli S, Parker CG. Enhanced mapping of small-molecule binding sites in cells. Nat Chem Biol 2024; 20:823-834. [PMID: 38167919 PMCID: PMC11213684 DOI: 10.1038/s41589-023-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.
Collapse
Affiliation(s)
- Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paolo Governa
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Appaso Jadhav
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok Dongre
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
2
|
Bousch C, Vreulz B, Kansal K, El-Husseini A, Cecioni S. Fluorogenic Photo-Crosslinking of Glycan-Binding Protein Recognition Using a Fluorinated Azido-Coumarin Fucoside. Angew Chem Int Ed Engl 2023; 62:e202314248. [PMID: 37847865 DOI: 10.1002/anie.202314248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Glycan recognition by glycan-binding proteins is central to the biology of all living organisms. The efficient capture and characterization of relatively weak non-covalent interactions remains an important challenge in various fields of research. Photoaffinity labeling strategies can create covalent bonds between interacting partners, and photoactive scaffolds such as benzophenone, diazirines and aryl azides have proved widely useful. Since their first introduction, relatively few improvements have been advanced and products of photoaffinity labeling remain difficult to detect. We report a fluorinated azido-coumarin scaffold which enables photolabeling under fast and mild activation, and which can leave a fluorescent tag on crosslinked species. Coupling this scaffold to an α-fucoside, we demonstrate fluorogenic photolabeling of glycan-protein interactions over a wide range of affinities. We expect this strategy to be broadly applicable to other chromophores and we envision that such "fluoro-crosslinkers" could become important tools for the traceable capture of non-covalent binding events.
Collapse
Affiliation(s)
- Cécile Bousch
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3 C 3 J7, Canada
| | - Brandon Vreulz
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3 C 3 J7, Canada
| | - Kartikey Kansal
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3 C 3 J7, Canada
| | - Ali El-Husseini
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3 C 3 J7, Canada
| | - Samy Cecioni
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3 C 3 J7, Canada
| |
Collapse
|
3
|
Wang H, Wang Z, Gao H, Liu J, Qiao Z, Zhao B, Liang Z, Jiang B, Zhang L, Zhang Y. A photo-oxidation driven proximity labeling strategy enables profiling of mitochondrial proteome dynamics in living cells. Chem Sci 2022; 13:11943-11950. [PMID: 36320915 PMCID: PMC9580500 DOI: 10.1039/d2sc04087e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 07/21/2023] Open
Abstract
Mapping the proteomic landscape of mitochondria with spatiotemporal precision plays a pivotal role in elucidating the delicate biological functions and complex relationship with other organelles in a variety of dynamic physiological processes which necessitates efficient and controllable chemical tools. We herein report a photo-oxidation driven proximity labeling strategy to profile the mitochondrial proteome by light dependence in living cells with high spatiotemporal resolution. Taking advantage of organelle-localizable organic photoactivated probes generating reactive species and nucleophilic substrates for proximal protein oxidation and trapping, mitochondrial proteins were selectively labeled by spatially limited reactions in their native environment. Integration of photo-oxidation driven proximity labeling and quantitative proteomics facilitated the plotting of the mitochondrial proteome in which up to 310 mitochondrial proteins were identified with a specificity of 64% in HeLa cells. Furthermore, mitochondrial proteome dynamics was deciphered in drug resistant Huh7 and LPS stimulated HMC3 cells which were hard-to-transfect. A number of differential proteins were quantified which were intimately linked to critical processes and provided insights into the related molecular mechanisms of drug resistance and neuroinflammation in the perspective of mitochondria. The photo-oxidation driven proximity labeling strategy offers solid technical support to a highly precise proteomic platform in time and finer space for more knowledge of subcellular biology.
Collapse
Affiliation(s)
- He Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhui Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zichun Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
4
|
Gagestein B, von Hegedus JH, Kwekkeboom JC, Heijink M, Blomberg N, van der Wel T, Florea BI, van den Elst H, Wals K, Overkleeft HS, Giera M, Toes REM, Ioan-Facsinay A, van der Stelt M. Comparative Photoaffinity Profiling of Omega-3 Signaling Lipid Probes Reveals Prostaglandin Reductase 1 as a Metabolic Hub in Human Macrophages. J Am Chem Soc 2022; 144:18938-18947. [PMID: 36197299 PMCID: PMC9585591 DOI: 10.1021/jacs.2c06827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The fish oil constituent
docosahexaenoic acid (DHA, 22:6
n-3) is
a signaling lipid with anti-inflammatory properties. The molecular
mechanisms underlying the biological effect of DHA are poorly understood.
Here, we report the design, synthesis, and application of a complementary
pair of bio-orthogonal, photoreactive probes based on the polyunsaturated
scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic
acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce
a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed
azide-alkyne cycloaddition. This pair of chemical probes was used
to map specific targets of the omega-3 signaling lipids in primary
human macrophages. Prostaglandin reductase 1 (PTGR1) was identified
as an interaction partner that metabolizes 17-oxo-DHA, an oxidative
metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory
lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results
demonstrate the potential of comparative photoaffinity protein profiling
for the discovery of metabolic enzymes of bioactive lipids and highlight
the power of chemical proteomics to uncover new biological insights.
Collapse
Affiliation(s)
- Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Johannes H von Hegedus
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Joanneke C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Bogdan I Florea
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Hans van den Elst
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Kim Wals
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Herman S Overkleeft
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
5
|
Tsushima M, Sato S, Nakane K, Nakamura H. Target Protein Identification on Photocatalyst-Functionalized Magnetic Affinity Beads. ACTA ACUST UNITED AC 2020; 101:e108. [PMID: 32603537 DOI: 10.1002/cpps.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although various affinity chromatography and photoaffinity labeling methods have been developed for target protein identification of bioactive molecules, it is often difficult to detect proteins that bind the ligand with weak transient affinity using these techniques. We have developed single electron transfer-mediated tyrosine labeling using ruthenium photocatalysts. Proximity labeling using 1-methyl-4-aryl-urazole (MAUra) labels proteins in close proximity to the photocatalyst with high efficiency and selectivity. Performing this labeling reaction on affinity beads makes it possible to label proteins that bind the ligand with weak transient affinity. In this article, novel protocols are described for target protein identification using photocatalyst proximity labeling on ruthenium photocatalyst-functionalized magnetic affinity beads. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of ruthenium photocatalyst Basic Protocol 2: Synthesis of azide- or desthiobiotin-conjugated labeling reagents Basic Protocol 3: Preparation of photocatalyst and ligand-functionalized affinity beads Basic Protocol 4: Target protein labeling in cell lysate Basic Protocol 5: Enrichment of labeled proteins with MAUra-DTB for LC-MS/MS analysis Basic Protocol 6: 2D-DIGE analysis of fluorescence-labeled proteins.
Collapse
Affiliation(s)
- Michihiko Tsushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Shinichi Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Keita Nakane
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
6
|
Park H, Zhang G, Bae J, Theis T, Warren WS, Wang Q. Application of 15N 2-Diazirines as a Versatile Platform for Hyperpolarization of Biological Molecules by d-DNP. Bioconjug Chem 2020; 31:537-541. [PMID: 32023034 DOI: 10.1021/acs.bioconjchem.0c00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
15N2-Diazirines represent an attractive class of imaging tags for hyperpolarized magnetic resonance imaging (HP-MRI), offering desirable biocompatibility, ease of incorporation into a variety of molecules, and ability to deliver long-lasting polarization. We have recently established hyperpolarization of 15N2-diazirines in organic solvents using SABRE-Shield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH). Yet, the current challenge of SABRE-SHEATH in water, specifically poor polarization efficiency, presents a barrier in examining the practical use of 15N2-diazirines for HP-MRI. Herein, we show that efficient polarization of diverse 15N2-diazirine-labeled molecules in water can be readily achieved by dissolution dynamic nuclear polarization (d-DNP), a hyperpolarization technique used in clinical practice. Hyperpolarization by d-DNP also demonstrates greater enhancement for long-lasting 15N signals, in comparison with SABRE-SHEATH. Various biologically important molecules are studied in this work, including amino acid, sugar, and drug compounds, demonstrating the great potential of 15N2-diazirines as molecular tags in broad biomedical and clinical applications.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Guannan Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Junu Bae
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Thomas Theis
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Warren S Warren
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Department of Physics, Radiology and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Wu H, Kohler J. Photocrosslinking probes for capture of carbohydrate interactions. Curr Opin Chem Biol 2019; 53:173-182. [PMID: 31706134 DOI: 10.1016/j.cbpa.2019.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
Glycan-mediated interactions are essential in many biological processes and regulate a wide variety of cellular functions. However, characterizing these interactions is difficult because glycan biosynthesis is not template driven and because carbohydrate recognition events are usually of low affinity and transient. Photocrosslinking carbohydrate probes can form a covalent bond with molecules in close proximity on UV irradiation and are capable of capturing interactions between glycans and glycan-binding proteins in situ. Because of these advantages, multiple photocrosslinking carbohydrate probes have been designed and applied to study the biological functions of glycans. This review will discuss recent advances in the development of novel photocrosslinking functional groups and the design of photocrosslinking probes to detect interactions mediated by glycolipids, peptidoglycan, and multivalent carbohydrate ligands. These probes have demonstrated the potential to address some of the major challenges in the study of glycan-mediated interactions in both model systems and in more complex biological settings.
Collapse
Affiliation(s)
- Han Wu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer Kohler
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA. http://
| |
Collapse
|
8
|
Masselin A, Petrelli A, Donzel M, Armand S, Cottaz S, Fort S. Unprecedented Affinity Labeling of Carbohydrate-Binding Proteins with s-Triazinyl Glycosides. Bioconjug Chem 2019; 30:2332-2339. [PMID: 31403275 DOI: 10.1021/acs.bioconjchem.9b00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carbohydrate-protein interactions trigger a wide range of biological signaling pathways, the mainstays of physiological and pathological processes. However, there are an incredible number of carbohydrate-binding proteins (CBPs) that remain to be identified and characterized. This study reports for the first time the covalent labeling of CBPs by triazinyl glycosides, a new and promising class of affinity-based glycoprobes. Mono- and bis-clickable triazinyl glycosides were efficiently synthesized from unprotected oligosaccharides (chitinpentaose and 2'-fucosyl-lactose) in a single step. These molecules allow the specific covalent labeling of chitin-oligosaccharide-binding proteins (wheat germ agglutinin WGA and Bc ChiA1 D202A, an inactivated chitinase) and fucosyl-binding lectin (UEA-I), respectively.
Collapse
Affiliation(s)
- Arnaud Masselin
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | | | - Maxime Donzel
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | - Sylvie Armand
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | - Sylvain Cottaz
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| | - Sébastien Fort
- Univ. Grenoble Alpes, CNRS, CERMAV , 38000 Grenoble , France
| |
Collapse
|
9
|
Tsushima M, Sato S, Niwa T, Taguchi H, Nakamura H. Catalyst-proximity protein chemical labelling on affinity beads targeting endogenous lectins. Chem Commun (Camb) 2019; 55:13275-13278. [DOI: 10.1039/c9cc05231c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyst-proximity labelling on affinity beads enables the identification of ligand-binding proteins such as lectins, which cannot be analyzed by conventional techniques. 1-Methyl-4-arylurazole (MAUra) efficiently labels proteins bound to the beads.
Collapse
Affiliation(s)
- Michihiko Tsushima
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Shinichi Sato
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Tatsuya Niwa
- Cell Biology Center
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hideki Taguchi
- Cell Biology Center
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
10
|
Ge SS, Chen B, Wu YY, Long QS, Zhao YL, Wang PY, Yang S. Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry. RSC Adv 2018; 8:29428-29454. [PMID: 35547988 PMCID: PMC9084484 DOI: 10.1039/c8ra03538e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022] Open
Abstract
Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.
Collapse
Affiliation(s)
- Sha-Sha Ge
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Biao Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Qing-Su Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Yong-Liang Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China +86-851-8829-2170 +86-851-8829-2171
- College of Pharmacy, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
11
|
Ota E, Usui K, Oonuma K, Koshino H, Nishiyama S, Hirai G, Sodeoka M. Thienyl-Substituted α-Ketoamide: A Less Hydrophobic Reactive Group for Photo-Affinity Labeling. ACS Chem Biol 2018; 13:876-880. [PMID: 29457885 DOI: 10.1021/acschembio.7b00988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoaffinity labeling (PAL) is an important tool in chemical biology research, but application of α-ketoamides for PAL has been hampered by their photoinstability. Here, we show that 2-thienyl-substituted α-ketoamide is a superior photoreactive group for PAL. Studies with a series of synthetic mannose-conjugated α-ketoamides revealed that 2-thienyl substitution of α-ketoamide decreased the electrophilicity of the keto group and reduced the rate of photodegradation. Mannose-conjugated thienyl α-ketoamide showed greater concanavalin A labeling efficiency than other alkyl or phenyl-substituted α-ketoamides. In comparison with representative conventional photoreactive groups, 2-thienyl ketoamide showed reduced labeling of nontarget proteins, probably owing to its lower hydrophobicity.
Collapse
Affiliation(s)
- Eisuke Ota
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kana Oonuma
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Shigeru Nishiyama
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, Fukuoka 812-8582, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- AMED-CREST, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Wang DY, Cao Y, Zheng LY, Chen LD, Chen XF, Hong ZY, Zhu ZY, Li X, Chai YF. Target Identification of Kinase Inhibitor Alisertib (MLN8237) by Using DNA-Programmed Affinity Labeling. Chemistry 2017; 23:10906-10914. [DOI: 10.1002/chem.201702033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Dong-Yao Wang
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Yan Cao
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Le-Yi Zheng
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Lang-Dong Chen
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Xiao-Fei Chen
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Zhan-Ying Hong
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Zhen-Yu Zhu
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| | - Xiaoyu Li
- Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong SAR China
| | - Yi-Feng Chai
- School of Pharmacy; Second Military Medical University; No. 325 Guohe Road Shanghai 200433 P.R. China
| |
Collapse
|
13
|
Murale DP, Hong SC, Haque MM, Lee JS. Photo-affinity labeling (PAL) in chemical proteomics: a handy tool to investigate protein-protein interactions (PPIs). Proteome Sci 2017; 15:14. [PMID: 28652856 PMCID: PMC5483283 DOI: 10.1186/s12953-017-0123-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Protein-protein interactions (PPIs) trigger a wide range of biological signaling pathways that are crucial for biomedical research and drug discovery. Various techniques have been used to study specific proteins, including affinity chromatography, activity-based probes, affinity-based probes and photo-affinity labeling (PAL). PAL has become one of the most powerful strategies to study PPIs. Traditional photocrosslinkers are used in PAL, including benzophenone, aryl azide, and diazirine. Upon photoirradiation, these photocrosslinkers (Pls) generate highly reactive species that react with adjacent molecules, resulting in a direct covalent modification. This review introduces recent examples of chemical proteomics study using PAL for PPIs.
Collapse
Affiliation(s)
- Dhiraj P Murale
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| | - Seong Cheol Hong
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea.,Department of Biological Chemistry, KIST-School UST, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| | - Md Mamunul Haque
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea.,Department of Biological Chemistry, KIST-School UST, 39-1 Hawolgok-dong, Seoul, 136-791 Republic of Korea
| |
Collapse
|
14
|
Wang D, Cao Y, Zheng L, Lv D, Chen L, Xing X, Zhu Z, Li X, Chai Y. Identification of Annexin A2 as a target protein for plant alkaloid matrine. Chem Commun (Camb) 2017; 53:5020-5023. [DOI: 10.1039/c7cc02227a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cellular target of matrine is identified.
Collapse
Affiliation(s)
- Dongyao Wang
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Yan Cao
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Leyi Zheng
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Diya Lv
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Langdong Chen
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xinrui Xing
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Zhenyu Zhu
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| | - Xiaoyu Li
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- China
| | - Yifeng Chai
- School of Pharmacy
- Second Military Medical University
- Shanghai
- China
| |
Collapse
|
15
|
Sakurai K, Yamaguchi T, Mizuno S. Design and synthesis of fluorescent glycolipid photoaffinity probes and their photoreactivity. Bioorg Med Chem Lett 2016; 26:5110-5115. [DOI: 10.1016/j.bmcl.2016.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
|
16
|
Onodera Y, Hirota K, Suga Y, Konoki K, Yotsu-Yamashita M, Sasaki M, Fuwa H. Diastereoselective Ring-Closing Metathesis as a Means to Construct Medium-Sized Cyclic Ethers: Application to the Synthesis of a Photoactivatable Gambierol Derivative. J Org Chem 2016; 81:8234-52. [DOI: 10.1021/acs.joc.6b01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Onodera
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Kazuaki Hirota
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Yuto Suga
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Keiichi Konoki
- Graduate
School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Mari Yotsu-Yamashita
- Graduate
School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Makoto Sasaki
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Haruhiko Fuwa
- Graduate
School of Life Sciences, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
17
|
A photo-cleavable biotin affinity tag for the facile release of a photo-crosslinked carbohydrate-binding protein. Bioorg Med Chem 2016; 24:1216-24. [DOI: 10.1016/j.bmc.2016.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/28/2022]
|
18
|
Sakurai K, Hatai Y, Okada A. Gold nanoparticle-based multivalent carbohydrate probes: selective photoaffinity labeling of carbohydrate-binding proteins. Chem Sci 2016; 7:702-706. [PMID: 28791113 PMCID: PMC5530003 DOI: 10.1039/c5sc03275j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Multivalent carbohydrate photoaffinity probes were developed based on gold nanoparticles (AuNPs) to provide a streamlined approach toward identification of carbohydrate-binding proteins. By using AuNPs as scaffolds, a carbohydrate ligand and a photoreactive group could be readily assembled on a probe in a modular fashion, which greatly accelerated the process of optimizing the probe design. The novel AuNP-based probes serve dual functions by facilitating photoaffinity labeling and by directly enriching the crosslinked proteins by centrifugation. We demonstrated that their ability to enhance the affinity and to stringently remove nonspecific proteins allowed selective photoaffinity labeling and isolation of a low affinity carbohydrate-binding protein in cell lysate.
Collapse
Affiliation(s)
- Kaori Sakurai
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Tokyo 184-8588 , Japan .
| | - Yuki Hatai
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Tokyo 184-8588 , Japan .
| | - Ayumi Okada
- Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Tokyo 184-8588 , Japan .
| |
Collapse
|
19
|
Sakurai K, Ozawa S, Yamaguchi T. Photoaffinity labeling studies of the carbohydrate-binding proteins with different affinities. Bioorg Med Chem 2015; 23:5319-25. [PMID: 26264843 DOI: 10.1016/j.bmc.2015.07.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Photoaffinity labeling has been used as a promising approach to detection and isolation of carbohydrate-binding proteins, which are typically characterized by low binding affinity and selectivity. When there are several specific binding proteins, it is desirable that a photoaffinity probe is capable of simultaneously crosslinking them and that the crosslinking yields depend on the relative binding affinities. In this study, we describe the design and synthesis of carbohydrate photoaffinity probes and their ability to capture lectins of different binding affinities.
Collapse
Affiliation(s)
- Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho, 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Shimpei Ozawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho, 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Tamayo Yamaguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho, 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
20
|
Sakurai K, Yasui T, Mizuno S. Comparative Analysis of the Reactivity of Diazirine-Based Photoaffinity Probes toward a Carbohydrate-Binding Protein. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaori Sakurai
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho, Koganei-shi Tokyo, 184-8588 Japan
| | - Tomoki Yasui
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho, Koganei-shi Tokyo, 184-8588 Japan
| | - Sakae Mizuno
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; 2-24-16, Naka-cho, Koganei-shi Tokyo, 184-8588 Japan
| |
Collapse
|