1
|
Merrild A, Johnsen NK, Zhang M, Bogojevic O, Ouyang Y, Guo Z. De Novo Synthesis of Perdeuterated Phosphoinositide by Installing a Non-native Phospholipid Biopathway in E. coli. ACS Synth Biol 2024; 13:3344-3353. [PMID: 39292964 DOI: 10.1021/acssynbio.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Phosphatidylinositol (PI) and its phosphorylated derivatives are of paramount importance in cellular functions and diseases. Understanding their diverse roles is, however, challenged by difficulties in synthesis and labeling techniques. In this proof-of-concept study, we demonstrate that PI can be straightforwardly de novo-synthesized and deuterium (2H)-labeled in Escherichia coli by genomic insertion of PI synthase from Trypanosoma brucei under constitutive synthetic promoter proD. Insertion into loci atpi-gidB and ybb revealed PI accumulation of 41% and 34% (mol/mol), respectively, when cultivated with glycerol as the sole carbon source. Growth of the atpi-gidB-PIS strain in deuterium-labeled (2H) substrates D2O, D8-glycerol, and D6-myo-inositol achieved PI deuteration of 90%, PE deuteration of 95%, and total fatty acids|fatty acid (FA) deuteration of 97%. This study offers an alternative convenient route to chemical and enzymatic labeling synthesis of PI; more excitingly, this work also, in principle, opens a door for tailoring the FA profile of deuterated PI/PE for task-specific application by repurposing FA biosynthesis pathways.
Collapse
Affiliation(s)
- Aske Merrild
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Niels Krabbe Johnsen
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Mingliang Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Visiting Researcher at Aarhus University 2022-2024, Fuzhou 350007, China
| | - Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Yi Ouyang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Gagestein B, von Hegedus JH, Kwekkeboom JC, Heijink M, Blomberg N, van der Wel T, Florea BI, van den Elst H, Wals K, Overkleeft HS, Giera M, Toes REM, Ioan-Facsinay A, van der Stelt M. Comparative Photoaffinity Profiling of Omega-3 Signaling Lipid Probes Reveals Prostaglandin Reductase 1 as a Metabolic Hub in Human Macrophages. J Am Chem Soc 2022; 144:18938-18947. [PMID: 36197299 PMCID: PMC9585591 DOI: 10.1021/jacs.2c06827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The fish oil constituent
docosahexaenoic acid (DHA, 22:6
n-3) is
a signaling lipid with anti-inflammatory properties. The molecular
mechanisms underlying the biological effect of DHA are poorly understood.
Here, we report the design, synthesis, and application of a complementary
pair of bio-orthogonal, photoreactive probes based on the polyunsaturated
scaffold DHA and its oxidative metabolite 17-hydroxydocosahexaenoic
acid (17-HDHA). In these probes, an alkyne serves as a handle to introduce
a fluorescent reporter group or a biotin-affinity tag via copper(I)-catalyzed
azide-alkyne cycloaddition. This pair of chemical probes was used
to map specific targets of the omega-3 signaling lipids in primary
human macrophages. Prostaglandin reductase 1 (PTGR1) was identified
as an interaction partner that metabolizes 17-oxo-DHA, an oxidative
metabolite of 17-HDHA. 17-oxo-DHA reduced the formation of pro-inflammatory
lipids 5-HETE and LTB4 in human macrophages and neutrophils. Our results
demonstrate the potential of comparative photoaffinity protein profiling
for the discovery of metabolic enzymes of bioactive lipids and highlight
the power of chemical proteomics to uncover new biological insights.
Collapse
Affiliation(s)
- Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Johannes H von Hegedus
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Joanneke C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Bogdan I Florea
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Hans van den Elst
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Kim Wals
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Herman S Overkleeft
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
3
|
Zhao LL, Wu Y, Huang S, Zhang Z, Liu W, Yan X. Ortho-Selective Hydrogen Isotope Exchange of Phenols and Benzyl Alcohols by Mesoionic Carbene-Iridium Catalyst. Org Lett 2021; 23:9297-9302. [PMID: 34792358 DOI: 10.1021/acs.orglett.1c03685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen isotope exchange reactions of phenols and benzyl alcohols have been achieved by a mesoionic carbene-iridium catalyst with high ortho selectivity and high functional group tolerance. Control experiments indicated that acetate is crucial to realize the ortho selectivity, whereas density functional theory calculations supported an outer-sphere direction with hydrogen bonding between acetate and the hydroxyl group.
Collapse
Affiliation(s)
- Liang-Liang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixin Wu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
4
|
Zhang M, Sayyad AA, Dhesi A, Orellana A. Enantioselective Synthesis of 7( S)-Hydroxydocosahexaenoic Acid, a Possible Endogenous Ligand for PPARα. J Org Chem 2020; 85:13621-13629. [PMID: 32954732 DOI: 10.1021/acs.joc.0c01770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the first total synthesis of the polyunsaturated fatty acid 7-hydroxydocosahexaenoic acid (7-HDHA) in racemic form and the enantioselective synthesis of 7-(S)-HDHA. Both syntheses follow a convergent approach that unites the C1-C9 and C10-C22 fragments using Sonogashira coupling and Boland reduction as key steps. These syntheses enabled the unambiguous characterization of this natural product for the first time and helped establish 7(S)-HDHA as a possible endogenous ligand for peroxisome proliferator-activated receptor alpha.
Collapse
Affiliation(s)
- Minhao Zhang
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Ashik A Sayyad
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Anmol Dhesi
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Arturo Orellana
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
5
|
Bis-allylic Deuterated DHA Alleviates Oxidative Stress in Retinal Epithelial Cells. Antioxidants (Basel) 2019; 8:antiox8100447. [PMID: 31581525 PMCID: PMC6826779 DOI: 10.3390/antiox8100447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a crucial role in developing and accelerating retinal diseases including age-related macular degeneration (AMD). Docosahexaenoic acid (DHA, C22:6, n-3), the main lipid constituent of retinal epithelial cell membranes, is highly prone to radical and enzymatic oxidation leading to deleterious or beneficial metabolites for retinal tissue. To inhibit radical oxidation while preserving enzymatic metabolism, deuterium was incorporated at specific positions of DHA, resulting in D2-DHA when incorporated at position 6 and D4-DHA when incorporated at the 6,9 bis-allylic positions. Both derivatives were able to decrease DHAs’ toxicity and free radical processes involved in lipid peroxidation, in ARPE-19 cells (Adult Retinal Pigment Epithelial cell line), under pro-oxidant conditions. Our positive results encouraged us to prepare lipophenolic-deuterated-DHA conjugates as possible drug candidates for AMD treatment. These novel derivatives proved efficient in limiting lipid peroxidation in ARPE-19 cells. Finally, we evaluated the underlying mechanisms and the enzymatic conversion of both deuterated DHA. While radical abstraction was affected at the deuterium incorporation sites, enzymatic conversion by the lipoxygenase 15s-LOX was not impacted. Our results suggest that site-specifically deuterated DHA could be used in the development of DHA conjugates for treatment of oxidative stress driven diseases, or as biological tools to study the roles, activities and mechanisms of DHA metabolites.
Collapse
|
6
|
Firsov AM, Fomich MA, Bekish AV, Sharko OL, Kotova EA, Saal HJ, Vidovic D, Shmanai VV, Pratt DA, Antonenko YN, Shchepinov MS. Threshold protective effect of deuterated polyunsaturated fatty acids on peroxidation of lipid bilayers. FEBS J 2019; 286:2099-2117. [PMID: 30851224 DOI: 10.1111/febs.14807] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
Abstract
Autoxidation of polyunsaturated fatty acids (PUFAs) damages lipid membranes and generates numerous toxic by-products implicated in neurodegeneration, aging, and other pathologies. Abstraction of bis-allylic hydrogen atoms is the rate-limiting step of PUFA autoxidation, which is inhibited by replacing bis-allylic hydrogens with deuterium atoms (D-PUFAs). In cells, the presence of a relatively small fraction of D-PUFAs among natural PUFAs is sufficient to effectively inhibit lipid peroxidation (LPO). Here, we investigate the effect of various D-PUFAs on the stability of liposomes under oxidative stress conditions. The permeability of vesicle membranes to fluorescent dyes was measured as a proxy for bilayer integrity, and the formation of conjugated dienes was monitored as a proxy for LPO. Remarkably, both approaches reveal a similar threshold for the protective effect of D-PUFAs in liposomes. We show that protection rendered by D-PUFAs depends on the structure of the deuterated fatty acid. Our findings suggest that protection of PUFAs against autoxidation depends on the total level of deuterated bi-sallylic (CD2 ) groups present in the lipid bilayer. However, the phospholipid containing 6,6,9,9,12,12,15,15,18,18-d10 -docosahexaenoic acid exerts a stronger protective effect than should be expected from its deuteration level. These findings further support the application of D-PUFAs as preventive/therapeutic agents in numerous pathologies that involve LPO.
Collapse
Affiliation(s)
- Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Maksim A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Andrei V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Olga L Sharko
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Dragoslav Vidovic
- School of Chemistry, Monash University, Clayton, Melbourne, Australia
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Science, University of Ottawa, Canada
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
7
|
Vik A, Hansen TV. Synthetic manipulations of polyunsaturated fatty acids as a convenient strategy for the synthesis of bioactive compounds. Org Biomol Chem 2018; 16:9319-9333. [DOI: 10.1039/c8ob02586j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The utilization of commercial polyunsaturated fatty acids in semi-syntheses of polyunsaturated natural products and derivatives has been reviewed.
Collapse
Affiliation(s)
- Anders Vik
- School of Pharmacy
- Department of Pharmaceutical Chemistry
- University of Oslo
- N-0316 Oslo
- Norway
| | - Trond Vidar Hansen
- School of Pharmacy
- Department of Pharmaceutical Chemistry
- University of Oslo
- N-0316 Oslo
- Norway
| |
Collapse
|
8
|
Smarun AV, Petković M, Shchepinov MS, Vidović D. Site-Specific Deuteration of Polyunsaturated Alkenes. J Org Chem 2017; 82:13115-13120. [DOI: 10.1021/acs.joc.7b02169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- A. V. Smarun
- School
of Physical and Mathematical Sciences, Division of Chemistry and Biological
Chemistry, Nanyang Technological University, 21 Nanyang Link, Nanyang 637371, Singapore
| | - M. Petković
- Faculty
of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Republic of Serbia
| | - M. S. Shchepinov
- Retrotope, Inc., Los Altos Hills, California 94022, United States
| | - D. Vidović
- School
of Physical and Mathematical Sciences, Division of Chemistry and Biological
Chemistry, Nanyang Technological University, 21 Nanyang Link, Nanyang 637371, Singapore
- School
of Chemistry, Monash University, Melbourne VIC 3800, Australia
| |
Collapse
|