1
|
Stamate AE, Pavel OD, Zăvoianu R, Bȋrjega R, Neubauer K, Koeckritz A, Marcu IC. Study of the catalytic properties of MgNi(Cu)Al LDH in the one-pot cascade oxidation-Knoevenagel condensation reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
2
|
Nehdi A, Frini-Srasra N, de Miguel G, Pavlovic I, Sánchez L. Use of LDH- chromate adsorption co-product as an air purification photocatalyst. CHEMOSPHERE 2022; 286:131812. [PMID: 34375829 DOI: 10.1016/j.chemosphere.2021.131812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This work deals with the use of layered double hydroxides for a double environmental remediation. The residue obtained in the use of these materials as a chromate sorbent in water, was subsequently studied as a photocatalyst for the removal of NOx gases. With this aim, MgAl-CO3 layered double hydroxides were synthesized by the coprecipitation method with a divalent/trivalent metal ratio of 3. After its calcination at 500 °C, the mixed oxide was obtained and MgAl-CrO4 were synthesized by the reconstruction method. A complete chemical, morphological and photochemical study of the samples was carried out with techniques such as XRD, FT-IR, TGA, XRF, PL, DRIFTS and UV-Vis spectroscopy. Results showed that LDH materials presented no significant changes in their structure after their use as a sorbent. Photocatalytic tests of the samples showed a very good NO removal efficiency, as well as a high selectivity (low NO2 emissions) through complete oxidation of these oxides to nitrate. The incorporation of chromate into the LDH structure improved the absorption of light in the visible region of the spectra, producing an improvement of 20% in the NO elimination compared with the LDH without chromate.
Collapse
Affiliation(s)
- A Nehdi
- Laboratoire des Matériaux Composites et Minéraux Argileux, Centre National de Recherche en Sciences des Matériaux CNRSM, Technopôle Borj Cedria, BP 73, 8027, Soliman, Tunisia
| | - N Frini-Srasra
- Laboratoire des Matériaux Composites et Minéraux Argileux, Centre National de Recherche en Sciences des Matériaux CNRSM, Technopôle Borj Cedria, BP 73, 8027, Soliman, Tunisia; Faculty of Sciences of Tunis (FST), Manar University, Tunisia
| | - G de Miguel
- Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain
| | - I Pavlovic
- Departamento de Química Inorgánica, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain.
| | - L Sánchez
- Departamento de Química Inorgánica, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014, Córdoba, Spain
| |
Collapse
|
3
|
Valiey E, Dekamin MG. Supported copper on a diamide-diacid-bridged PMO: an efficient hybrid catalyst for the cascade oxidation of benzyl alcohols/Knoevenagel condensation. RSC Adv 2021; 12:437-450. [PMID: 35424510 PMCID: PMC8978704 DOI: 10.1039/d1ra06509b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, a novel periodic mesoporous organosilica (PMO) containing diamide-diacid bridges was conveniently prepared using ethylenediaminetetraacetic dianhydride to support Cu(ii) species and affording supramolecular Cu@EDTAD-PMO nanoparticles efficiently. Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) analysis, and high-resolution transmission electron microscopy (HRTEM) results confirmed the successful synthesis of Cu@EDTAD-PMO. The stabilized Cu(ii) nanoparticles inside the mesochannels of the new PMO provided appropriate sites for selective oxidation of different benzyl alcohol derivatives to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile. Therefore, Cu@EDTAD-PMO can be considered as a multifunctional heterogeneous catalyst, which is prepared easily through a green procedure and demonstrates appropriate stability with almost no leaching of the Cu(ii) nanoparticles into the reaction medium, and easy recovery through simple filtration. The recycled Cu@EDTAD-PMO was reused up to five times without significant loss of its catalytic activity. The stability, recoverability, and reusability of the designed heterogeneous catalyst were also studied under various reaction conditions.
Collapse
Affiliation(s)
- Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
4
|
Ce-Containing MgAl-Layered Double Hydroxide-Graphene Oxide Hybrid Materials as Multifunctional Catalysts for Organic Transformations. MATERIALS 2021; 14:ma14237457. [PMID: 34885609 PMCID: PMC8659285 DOI: 10.3390/ma14237457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/04/2023]
Abstract
The combination of layered double hydroxides (LDH) with graphene oxide (GO) enables the formation of nanohybrids with improved properties. This work focuses on the structural and catalytic properties of Ce-containing MgAl LDH-GO composites bearing different concentrations of GO in the range of 5-25 wt.%. The synthesis of the composites was performed by co-precipitating the LDH phase in the presence of GO, while their characterization was performed using XRF, XRD, DRIFT, Raman, SEM, nitrogen adsorption-desorption, and acidity-basicity measurements. The LDH-GO composites, showing redox, basic, and acid catalytic functions, were tested in two different types of organic transformations: (i) Knoevenagel condensation and (ii) one-pot cascade oxidation-Knoevenagel condensation. (i) The cinnamic acid was synthesized by the Knoevenagel condensation of benzaldehyde with diethylmalonate. The composites showed catalytic performances in strong contrast to neat LDH or GO, suggesting a synergistic interaction between the two components. During Knoevenagel condensation, the catalytic activity increased with the GO content in the hybrids up to 15 wt.% and decreased afterwards. (ii) 2-Benzoyl-3-phenylacrylonitrile was synthesized by the aerobic oxidation of benzyl alcohol followed by the Knoevenagel condensation with benzoyl acetonitrile using three different non-polar solvents, i.e., toluene, benzene, and mesitylene. The conversion of benzyl alcohol was higher for the hybrid materials compared to the individual components but decreased with the increase of the graphene oxide concentration.
Collapse
|
5
|
Meninno S, Carratù M, Overgaard J, Lattanzi A. Diastereoselective Synthesis of Functionalized 5-Amino-3,4-Dihydro-2H-Pyrrole-2-Carboxylic Acid Esters: One-Pot Approach Using Commercially Available Compounds and Benign Solvents. Chemistry 2021; 27:4573-4577. [PMID: 33464645 DOI: 10.1002/chem.202005262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Indexed: 11/08/2022]
Abstract
A novel three-step four-transformation approach to highly functionalized 5-amino-3,4-dihydro-2H-pyrrole-2-carboxylic acid esters, starting from commercially available phenylsulfonylacetonitrile, aldehydes, and N-(diphenylmethylene)glycine tert-butyl ester, was developed. The one-pot strategy delivered this class of amidines bearing, for the first time, three contiguous stereocenters, in good to high yield and diastereoselectivity. The entire sequence was carried out using diethyl carbonate and 2-methyl tetrahydrofuran as benign solvents, operating under metal-free conditions. The process could be conveniently scaled-up, and the synthetic utility of the products was demonstrated.
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Mario Carratù
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| |
Collapse
|
6
|
Yuan X, Wan Z, Ning J, Zhang Q, Luo J. One‐pot oxidant‐free dehydrogenation‐Knoevenagel tandem reaction catalyzed by a recyclable magnetic base‐metal bifunctional catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofeng Yuan
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Zijuan Wan
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Jinfeng Ning
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry, Biology and Material Engineering Suzhou University of Science and Technology Suzhou 215009 China
| | - Jun Luo
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
| |
Collapse
|
7
|
Vala N, Joshi PA, Mishra M. Catalytic activity of Mg–Al hydrotalcites and derived mixed oxides for imination reactions via an oxidative-dehydrogenation mechanism. NEW J CHEM 2020. [DOI: 10.1039/c9nj06096k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Mg–Al hydrotalcite derived mixed oxide (Mg/Al ratio = 3.0) showed excellent catalytic activity in imination and tandem reactions via an oxidative-dehydrogenation mechanism.
Collapse
Affiliation(s)
- Naresh Vala
- Department of Chemical Engineering
- Faculty of Technology & Shah-Schulman Center for Surface Science and Nanotechnology
- Dharmsinh Desai University
- College Road
- Nadiad 387 001
| | - Pradyuman A. Joshi
- Department of Chemical Engineering
- Faculty of Technology & Shah-Schulman Center for Surface Science and Nanotechnology
- Dharmsinh Desai University
- College Road
- Nadiad 387 001
| | - Manish Mishra
- Department of Chemistry
- Sardar Patel University
- Vallabh Vidyanagar 388 120
- India
| |
Collapse
|
8
|
Cu(II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci Rep 2019; 9:17758. [PMID: 31780721 PMCID: PMC6883033 DOI: 10.1038/s41598-019-53765-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023] Open
Abstract
The uniform decoration of Cu(II) species and magnetic nanoparticles on the melamine-functionalized chitosan afforded a new supramolecular biopolymeric nanocomposite (Cs-Pr-Me-Cu(II)-Fe3O4). The morphology, structure, and catalytic activity of the Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite have been systematically investigated. It was found that Cs-Pr-Me-Cu(II)-Fe3O4 nanocomposite can smoothly promote environmentally benign oxidation of different benzyl alcohol derivatives by tert-butyl hydroperoxide (TBHP) to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile, as a multifunctional catalyst. Interestingly, Fe3O4 nanoparticles enhance the catalytic activity of Cu(II) species. The corresponding benzylidenemalononitriles were formed in high to excellent yields at ambient pressure and temperature. The heterogeneous Cs-Pr-Me-Cu(II)-Fe3O4 catalyst was also very stable with almost no leaching of the Cu(II) species into the reaction medium and could be easily recovered by an external magnet. The recycled Cs-Pr-Me-Cu(II)-Fe3O4 was reused at least four times with slight loss of its activity. This is a successful example of the combination of chemo- and bio-drived materials catalysis for mimicing biocatalysis as well as sustainable and one pot multistep synthesis.
Collapse
|
9
|
Zhang W, Wang Z, Zhao Y, Miras HN, Song Y. Precise Control of the Oriented Layered Double Hydroxide Nanosheets Growth on Graphene Oxides Leading to Efficient Catalysts for Cascade Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201901208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zelin Wang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | | | - Yu‐Fei Song
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
10
|
Abstract
Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in relevant chemical reactions and as photocatalysts for organic molecule degradation, water splitting reaction, CO2 conversion, and reduction. Subsequently, the emerging role of these materials in biological applications is discussed, specifically focusing on their use as biosensors, DNA, RNA, and drug delivery, finally elucidating their suitability as contrast agents and for cellular differentiation. Concluding remarks and future prospects deal with future applications of LDHs, encouraging researches in better understanding the fundamental mechanisms involved in catalytic and photocatalytic processes, and the molecular pathways that are activated by the interaction of LDHs with cells in terms of both uptake mechanisms and nanotoxicology effects.
Collapse
|
11
|
Zhai S, Zhou W, Dai X, Yang S, Qian J, Sun F, He M, Chen Q. Efficient Synthesis of α,β
-Unsaturated Ketones from Primary Alcohols and Ketones over Mg 2+
-Modified NiGa Hydrotalcites. ChemistrySelect 2018. [DOI: 10.1002/slct.201801862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaoyan Zhai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Weiyou Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Xuan Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Song Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Fu'an Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Mingyang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology; Changzhou University; Changzhou 213164 P.R. China
| |
Collapse
|
12
|
Sun F, Zhou J, Zhou W, Pan J, Qian J, He M, Chen Q. Efficient aerobic oxidation of alcohols catalyzed by NiGa hydrotalcites in the absence of any additives. NEW J CHEM 2018. [DOI: 10.1039/c7nj03895j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface Brønsted OH basic site on NiGa hydrotalcites was suggested to be the key active site for the oxidation.
Collapse
Affiliation(s)
- Fuan Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jiacheng Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Weiyou Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jiugao Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Mingyang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|