1
|
Ghosh A, Rana T, Bhaduri N, Pawar AB. Reverse Regioselective Cp*Co(III)-Catalyzed [4 + 2] C-H Annulation of N-Chloroamides with Vinylsilanes: Synthesis of 4-Silylated Isoquinolones and Their Synthetic Utilities. Org Lett 2023; 25:7878-7883. [PMID: 37871162 DOI: 10.1021/acs.orglett.3c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We have developed a Cp*Co(III)-catalyzed reverse regioselective [4 + 2] annulation of N-chlorobenzamides/acrylamides with vinylsilanes for the synthesis of 4-silylated isoquinolones. The reaction was performed at ambient temperature under redox-neutral conditions. The reaction utilized the N-Cl bond as an internal oxidant, furnished the required products with excellent regioselectivities, and demonstrated high functional group tolerance. The synthetic utility of 4-silylated isoquinolones has been demonstrated for the preparation of 4-heteroarylated and 4-alkylated isoquinolones via metal-free C-C couplings. Additionally, 3,4-dihydroisoquinolones were synthesized via protodesilylation of 4-silylated isoquinolones, thus making vinylsilane an ethylene surrogate.
Collapse
Affiliation(s)
- Arijit Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Tamanna Rana
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Nilanjan Bhaduri
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
2
|
Rana T, Ghosh A, Aher YN, Pawar AB. Harnessing Vinyl Acetate as an Acetylene Equivalent in Redox-Neutral Cp*Co(III)-Catalyzed C-H Activation/Annulation for the Synthesis of Isoquinolones and Pyridones. ACS OMEGA 2023; 8:25262-25271. [PMID: 37483194 PMCID: PMC10357576 DOI: 10.1021/acsomega.3c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
We have developed Cp*Co(III)-catalyzed redox-neutral synthesis of 3,4-unsubstituted isoquinoline 1(2H)-ones at ambient temperature using N-chloroamides as a starting material. The reaction utilizes vinyl acetate as an inexpensive and benign acetylene surrogate. The N-Cl bond of the N-chlorobenzamides plays the role of an internal oxidant and hence precludes the need for an external oxidant. The reaction works with a wide range of substrates having various functional groups and a substrate containing a heterocyclic ring. Notably, the reaction is extended to the N-chloroacrylamides in which vinylic C-H activation occurs to furnish the 2-pyridone derivatives. Preliminary mechanistic studies were also conducted to shed light on the mechanism of this reaction.
Collapse
|
3
|
Bhaduri N, Pawar AB. Redox-neutral C-H annulation strategies for the synthesis of heterocycles via high-valent Cp*Co(III) catalysis. Org Biomol Chem 2023; 21:3918-3941. [PMID: 37128760 DOI: 10.1039/d3ob00133d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A variety of biologically active molecules, pharmaceuticals, and natural products consist of a nitrogen-containing heterocyclic backbone. The majority of them are isoquinolones, indoles, isoquinolines, etc.; thereby the synthesis and derivatization of such heterocycles are synthetically very relevant. Also, certain naphthol derivatives have high synthetic utility as agrochemicals and in dye industries. Previous approaches have utilized ruthenium, rhodium, or iridium which may not be desirable due to the high toxicity, low abundance, and high cost of such 4d and 5d metals. Moreover, the need for an external oxidant during the reaction also adds by-products to the system. A high-valent cobalt-catalyzed redox-neutral C-H functionalization strategy has emerged to be a far better alternative in this regard. The use of the non-noble metal cobalt allows for selectivity and specificity in product formation. Also, the redox-neutral concept avoids the use of an external oxidant either due to the presence of a metal in a non-variable oxidation state throughout the catalytic cycle or due to the presence of an oxidizing directing group or an oxidizing coupling partner. Such an oxidizing directing group not only directs the catalyst to a specific reaction site by chelation but also regenerates the catalyst at the end of the cycle. Certain bonds such as N-O, N-N, N-Cl, N-S, and C-S are the main game-players behind the oxidizing property of such directing groups. In the other case, the directing group only chelates the catalyst to a reaction center, whereas the oxidation is carried out by the upcoming group/coupling partner. Overall, merging the redox-neutral concept with the high-valent cobalt catalysis is paving the way forward toward a sustainable and environmentally friendly approach. This review critically describes the mechanistic understanding, scope, limitations, and synthesis of various biologically relevant heterocycles via the redox-neutral concept in the high-valent Cp*Co(III)-catalyzed C-H functionalization chemistry domain.
Collapse
Affiliation(s)
- Nilanjan Bhaduri
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| | - Amit B Pawar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
4
|
Whitehurst W, Kim J, Koenig SG, Chirik PJ. C-H Activation by Isolable Cationic Bis(phosphine) Cobalt(III) Metallacycles. J Am Chem Soc 2022; 144:19186-19195. [PMID: 36194198 PMCID: PMC9585578 DOI: 10.1021/jacs.2c08865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/30/2022]
Abstract
Five- and six-coordinate cationic bis(phosphine) cobalt(III) metallacycle complexes were synthesized with the general structures, [(depe)Co(cycloneophyl)(L)(L')][BArF4] (depe = 1,2-bis(diethylphosphino)ethane; cycloneophyl = [κ-C:C-(CH2C(Me)2)C6H4]; L/L' = pyridine, pivalonitrile, or the vacant site, BAr4F = B[(3,5-(CF3)2)C6H3]4). Each of these compounds promoted facile directed C(sp2)-H activation with exclusive selectivity for ortho-alkylated products, consistent with the selectivity of reported cobalt-catalyzed arene-alkene-alkyne coupling reactions. The direct observation of C-H activation by cobalt(III) metallacycles provided experimental support for the intermediacy of these compounds in this class of catalytic C-H functionalization reaction. Deuterium labeling and kinetic studies provided insight into the nature of C-H bond cleavage and C-C bond reductive elimination from isolable cobalt(III) precursors.
Collapse
Affiliation(s)
- William
G. Whitehurst
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| | - Stefan G. Koenig
- Small
Molecule Process Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul J. Chirik
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Hammarback LA, Eastwood JB, Burden TJ, Pearce CJ, Clark IP, Towrie M, Robinson A, Fairlamb IJS, Lynam JM. A comprehensive understanding of carbon-carbon bond formation by alkyne migratory insertion into manganacycles. Chem Sci 2022; 13:9902-9913. [PMID: 36199635 PMCID: PMC9431456 DOI: 10.1039/d2sc02562k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
Migratory insertion (MI) is one of the most important processes underpinning the transition metal-catalysed formation of C-C and C-X bonds. In this work, a comprehensive model of MI is presented, based on the direct observation of the states involved in the coupling of alkynes with cyclometallated ligands, augmented with insight from computational chemistry. Time-resolved spectroscopy demonstrates that photolysis of complexes [Mn(C^N)(CO)4] (C^N = cyclometalated ligand) results in ultra-fast dissociation of a CO ligand. Performing the experiment in a toluene solution of an alkyne results in the initial formation of a solvent complex fac-[Mn(C^N)(toluene)(CO)3]. Solvent substitution gives an η2-alkyne complex fac-[Mn(C^N)(η2-R1C2R2)(CO)3] which undergoes MI of the unsaturated ligand into the Mn-C bond. These data allowed for the dependence of second order rate constants for solvent substitution and first order rate constants for C-C bond formation to be determined. A systematic investigation into the influence of the alkyne and C^N ligand on this process is reported. The experimental data enabled the development of a computational model for the MI reaction which demonstrated that a synergic interaction between the metal and the nascent C-C bond controls both the rate and regiochemical outcome of the reaction. The time-resolved spectroscopic method enabled the observation of a multi-step reaction occurring over 8 orders of magnitude in time, including the formation of solvent complexes, ligand substitution and two sequential C-C bond formation steps.
Collapse
Affiliation(s)
| | | | - Thomas J Burden
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Callum J Pearce
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Alan Robinson
- Syngenta Crop Protection AG Münchwilen Breitenloh 5,4333 Switzerland
| | - Ian J S Fairlamb
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
6
|
Dahiya P, Sarkar A, Sundararaju B. Well‐defined [Cp*Co(N,O)I]‐Catalysts for Site‐selective Intramolecular C‐H Amidation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Lian C, Zhang C, Zhao Y, Wang H, Li X, Huang L. Oxidative coupling of primary amines to imines catalyzed by CoCl
2
·6H
2
O. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chengxi Lian
- State Key Laboratory Base for Eco‐Chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Chaoying Zhang
- State Key Laboratory Base for Eco‐Chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Yingchun Zhao
- State Key Laboratory Base for Eco‐Chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Hui Wang
- State Key Laboratory Base for Eco‐Chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Xiufen Li
- State Key Laboratory Base for Eco‐Chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Longjiang Huang
- State Key Laboratory Base for Eco‐Chemical Engineering, College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
8
|
Hao X, Ji H, Zhan H, Zhang Q, Li D. Cobalt Catalyst‐Controlled Selective Dioxygenation of Styrenes Using
N‐
Hydroxyphthalimide with Molecular Oxygen. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaosong Hao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 People's Republic of China
| | - Huihui Ji
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 People's Republic of China
| | - Hongju Zhan
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 People's Republic of China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 People's Republic of China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 People's Republic of China
- Hubei Provincial Key Laboratory of Drug Synthesis and Optimization Jingchu University of Technology Jingmen 448000 People's Republic of China
| |
Collapse
|
9
|
Ramachandran K, Anbarasan P. Cp*Co III-catalyzed C2-alkylation of indole derivatives with substituted cyclopropanols. Chem Commun (Camb) 2022; 58:10536-10539. [DOI: 10.1039/d2cc03719j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and efficient Cp*CoIII-catalyzed C2-alkylation of N-pyridylindoles has been achieved utilizing cyclopropanols as an alkylating reagent.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| |
Collapse
|
10
|
Ramachandran K, Anbarasan P. Cobalt-catalyzed multisubstituted allylation of the chelation-assisted C-H bond of (hetero)arenes with cyclopropenes. Chem Sci 2021; 12:13442-13449. [PMID: 34777763 PMCID: PMC8528013 DOI: 10.1039/d1sc03476f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cyclopropenes are highly strained three-membered carbocycles, which offer unique reactivity in organic synthesis. Herein, Cp*CoIII-catalyzed ring-opening isomerization of cyclopropenes to cobalt vinylcarbene has been utilized for the synthesis of multisubstituted allylarenes via directing group-assisted functionalization of C-H bonds of arenes and heteroarenes. Employing this methodology, various substituents can be introduced at all three carbons of the allyl moiety with high selectivity. The important highlights are excellent functional group tolerance, multisubstituted allylation, high selectivity, gram scale synthesis, removable directing group, and synthesis of cyclopenta[b]indoles. In addition, a potential cobaltocycle intermediate was identified and a plausible mechanism is also proposed.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India https://home.iitm.ac.in/anbarasansp/
| |
Collapse
|
11
|
Ghorai J, Kesavan A, Anbarasan P. Cp*Co(III)-catalyzed C2-thiolation and C2,C3-dithiolation of substituted indoles with N-(arylthio)succinimide. Chem Commun (Camb) 2021; 57:10544-10547. [PMID: 34553717 DOI: 10.1039/d1cc03760a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A general and efficient Cp*CoIII-catalyzed C2-thiolation and C2,C3-dithiolation of indole derivatives has been achieved employing N-(aryl/alkylthio)succinimide as a thiolating reagent. This external oxidant-free method utilizes only catalytic amounts of additive and tolerates various functional groups to afford various thiolated products in good yields. Control experiments revealed the importance of the Cp*CoIII-catalyst for both C2- and C3-thiolation.
Collapse
Affiliation(s)
- Jayanta Ghorai
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Arunachalam Kesavan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
12
|
Sunny S, Karvembu R. Recent Advances in Cobalt‐Catalyzed, Directing‐Group‐Assisted C−H Bond Amidation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sereena Sunny
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
13
|
Wu F, Deraedt C, Cornaton Y, Ruhlmann L, Karmazin L, Bailly C, Kyritsakas N, Le Breton N, Choua S, Djukic JP. Fate of Cobaltacycles in Cp*Co-Mediated C–H Bond Functionalization Catalysis: Cobaltacycles May Collapse upon Oxidation via Co(IV) Species. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fule Wu
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Christophe Deraedt
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Yann Cornaton
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Laurent Ruhlmann
- Laboratoire d’Electrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie Fédération de Chimie Le Bel−FR2010 BP 296R8, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Corinne Bailly
- Service de Radiocristallographie Fédération de Chimie Le Bel−FR2010 BP 296R8, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Nathalie Kyritsakas
- Service de Radiocristallographie Fédération de Chimie Le Bel−FR2010 BP 296R8, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Nolwenn Le Breton
- Laboratoire Propriétés Optiques et Magnétiques des Architectures Moléculaires, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Sylvie Choua
- Laboratoire Propriétés Optiques et Magnétiques des Architectures Moléculaires, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométalliques, Institut de Chimie de Strasbourg (UMR 7177) CNRS/Université de Strasbourg, 4 rue Blaise Pascal, F-67000 Strasbourg, France
| |
Collapse
|
14
|
Aher YN, Pawar AB. Cp*Co(III)-catalyzed C-H amination/annulation cascade of sulfoxonium ylides with anthranils for the synthesis of indoloindolones. Chem Commun (Camb) 2021; 57:7164-7167. [PMID: 34184017 DOI: 10.1039/d1cc02817k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cp*Co(iii)-catalyzed [4+1] annulation of sulfoxonium ylides with anthranils has been developed for the synthesis of indole-indolone scaffolds. The dual functionality of anthranils was exploited, wherein the nitrogen has been used for C-H amination and the aldehyde group was utilized in the subsequent intramolecular aldol condensation to furnish the corresponding annulated products.
Collapse
Affiliation(s)
- Yogesh N Aher
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India.
| | - Amit B Pawar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
15
|
Mandal R, Garai B, Sundararaju B. Cp*Co III-Catalyzed C(7)-H Bond Annulation of Indolines with Alkynes. J Org Chem 2021; 86:9407-9417. [PMID: 34213334 DOI: 10.1021/acs.joc.1c00713] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient protocol for the synthesis of biologically essential pyrroloquinolinones has been developed under Cp*CoIII catalysis, which involves a cascade reaction of C(7)-H alkenylation with alkynes followed by nucleophilic addition. A wide variety of internal alkynes including enyne, diyne, and ynamide and more challenging terminal alkynes were successfully employed for the annulation in good to excellent yield with high regioselectivity.
Collapse
Affiliation(s)
- Rajib Mandal
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| | - Bholanath Garai
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| | - Basker Sundararaju
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
16
|
Xu X, Zhang L, Zhao H, Pan Y, Li J, Luo Z, Han J, Xu L, Lei M. Cobalt(III)-Catalyzed Regioselective C6 Olefination of 2-Pyridones Using Alkynes: Olefination/Directing Group Migration and Olefination. Org Lett 2021; 23:4624-4629. [PMID: 34106716 DOI: 10.1021/acs.orglett.1c01368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Co(III)-catalyzed highly regio- and stereoselective direct C6 olefination of 2-pyridones with alkynes has been developed with the assistance of chelation. Upon variation of the reaction conditions, 2-pyridones react well with diaryl alkynes via a C6 olefination/directing group migration pathway to give the tetrasubstituted 6-vinyl-2-pyridones, but the C6-H olefination with terminal alkynes works effectively to afford only the C6-olefinated 2-pyridones. A judicious choice of a solvent and an additive is crucial for catalysis. The protocols feature 100% atom economy, excellent site selectivity, high stereoselectivity, an ample substrate scope, and good compatibility of functional groups. Synthetic applications are demonstrated, and experimental studies and density functional theory calculations are conducted to gain mechanistic insight into the two transformations.
Collapse
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jiajie Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhenli Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jiahong Han
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Direct synthesis of benzoxazinones via Cp*Co(III)-catalyzed C–H activation and annulation of sulfoxonium ylides with dioxazolones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Gao M, Chen M, Pannecoucke X, Jubault P, Besset T. Pd-Catalyzed Directed Thiocyanation Reaction by C-H Bond Activation. Chemistry 2020; 26:15497-15500. [PMID: 32833317 PMCID: PMC7756308 DOI: 10.1002/chem.202003521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Indexed: 12/20/2022]
Abstract
The Pd-catalyzed directed thiocyanation reaction of arenes and heteroarenes by C-H bond activation was achieved. In the presence of an electrophilic SCN source, this original methodology offered an efficient tool to access a panel of functionalized thiocyanated compounds (21 examples, up to 78 % yield). Post-functionalization reactions further demonstrated the synthetic utility of the approach by converting the SCN-containing molecules into value-added scaffolds.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Mu‐Yi Chen
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Xavier Pannecoucke
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Philippe Jubault
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| | - Tatiana Besset
- Normandie Univ, INSA RouenUNIROUEN, CNRS, COBRA (UMR 6014)76000RouenFrance
| |
Collapse
|
19
|
Shinde VN, Kanchan Roy T, Jaspal S, Nipate DS, Meena N, Rangan K, Kumar D, Kumar A. Rhodium(III)‐Catalyzed Annulation of 2‐Arylimidazo[1,2‐
a
]pyridines with Maleimides: Synthesis of 1
H
‐Benzo[
e
]pyrido[1′,2′:1,2]imidazo[4,5‐
g
]isoindole‐1,3(2
H
)‐Diones and their Photophysical Studies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vikki N. Shinde
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya Suchani J&K 181143 India
| | - Sonam Jaspal
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Dhananjay S. Nipate
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Neha Meena
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Krishnan Rangan
- Department of Chemistry Birla Institute of Technology and Science Pilani, Hyderbad Campus Hyderabad Telangana 500078 India
| | - Dalip Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani, Pilani Campus Pilani Rajasthan 333031 India
| |
Collapse
|
20
|
Ozols K, Onodera S, Woźniak Ł, Cramer N. Cobalt(III)‐Catalyzed Enantioselective Intermolecular Carboamination by C−H Functionalization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011140] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kristers Ozols
- Institute of Chemical Sciences and Engineering (ISIC) EPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Shunsuke Onodera
- Institute of Chemical Sciences and Engineering (ISIC) EPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
- Department of Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522 Japan
| | - Łukasz Woźniak
- Institute of Chemical Sciences and Engineering (ISIC) EPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC) EPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| |
Collapse
|
21
|
Cobalt(III)‐Catalyzed Enantioselective Intermolecular Carboamination by C−H Functionalization. Angew Chem Int Ed Engl 2020; 60:655-659. [DOI: 10.1002/anie.202011140] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 12/30/2022]
|
22
|
Zhang Q, Li J, Li J, Yuan S, Li D. An unprecedented cobalt-catalyzed selective aroylation of primary amines with aroyl peroxides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Yan Q, Huang H, Zhang H, Li MH, Yang D, Song MP, Niu JL. Synthesis of 7-Amido Indolines by Cp*Co(III)-Catalyzed C–H Bond Amidation. J Org Chem 2020; 85:11190-11199. [DOI: 10.1021/acs.joc.0c01259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qingkai Yan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - He Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng-Hui Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Dandan Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Lee J, Lee J, Jung H, Kim D, Park J, Chang S. Versatile Cp*Co(III)(LX) Catalyst System for Selective Intramolecular C–H Amidation Reactions. J Am Chem Soc 2020; 142:12324-12332. [DOI: 10.1021/jacs.0c04448] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jia Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jeonghyo Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Juhyeon Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
25
|
Liu Y, Xia Y, Shi B. Ni‐Catalyzed Chelation‐Assisted
Direct Functionalization of Inert C—H Bonds. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900468] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan‐Hua Liu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Yu‐Nong Xia
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| | - Bing‐Feng Shi
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
26
|
Martínez de Salinas S, Sanjosé‐Orduna J, Odena C, Barranco S, Benet‐Buchholz J, Pérez‐Temprano MH. Weakly Coordinated Cobaltacycles: Trapping Catalytically Competent Intermediates in Cp*Co
III
Catalysis. Angew Chem Int Ed Engl 2020; 59:6239-6243. [DOI: 10.1002/anie.201916387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Sara Martínez de Salinas
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Jesús Sanjosé‐Orduna
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Sergio Barranco
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Jordi Benet‐Buchholz
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Mónica H. Pérez‐Temprano
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
27
|
Martínez de Salinas S, Sanjosé‐Orduna J, Odena C, Barranco S, Benet‐Buchholz J, Pérez‐Temprano MH. Weakly Coordinated Cobaltacycles: Trapping Catalytically Competent Intermediates in Cp*Co
III
Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Martínez de Salinas
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Jesús Sanjosé‐Orduna
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Sergio Barranco
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Jordi Benet‐Buchholz
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| | - Mónica H. Pérez‐Temprano
- Institute of Chemical Research of Catalonia (ICIQ) Avgda. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
28
|
Khan B, Dwivedi V, Sundararaju B. Cp*Co(III)‐Catalyzed
o
‐Amidation of Benzaldehydes with Dioxazolones Using Transient Directing Group Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901267] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bhuttu Khan
- Department of ChemistryIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh India- 208 016
| | - Vikas Dwivedi
- Department of ChemistryIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh India- 208 016
| | - Basker Sundararaju
- Department of ChemistryIndian Institute of Technology Kanpur, Kanpur Uttar Pradesh India- 208 016
| |
Collapse
|
29
|
Jayakumar J, Vedarethinam G, Hsiao H, Sun S, Chuang S. Cascade One‐Pot Synthesis of Orange‐Red‐Fluorescent Polycyclic Cinnolino[2,3‐
f
]phenanthridin‐9‐ium Salts by Palladium(II)‐Catalyzed C−H Bond Activation of 2‐Azobiaryl Compounds and Alkenes. Angew Chem Int Ed Engl 2020; 59:689-694. [DOI: 10.1002/anie.201910959] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Huan‐Chang Hsiao
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shang‐You Sun
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shih‐Ching Chuang
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
30
|
Jayakumar J, Vedarethinam G, Hsiao H, Sun S, Chuang S. Cascade One‐Pot Synthesis of Orange‐Red‐Fluorescent Polycyclic Cinnolino[2,3‐
f
]phenanthridin‐9‐ium Salts by Palladium(II)‐Catalyzed C−H Bond Activation of 2‐Azobiaryl Compounds and Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Huan‐Chang Hsiao
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shang‐You Sun
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Shih‐Ching Chuang
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
31
|
Cobalt‐Catalyzed Oxyalkylation of Styrenes via α‐C(Sp
3
)−H Bond Activation of Ethers Without Organic Peroxides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Sanjosé-Orduna J, Mudarra ÁL, Martínez de Salinas S, Pérez-Temprano MH. Sustainable Knowledge-Driven Approaches in Transition-Metal-Catalyzed Transformations. CHEMSUSCHEM 2019; 12:2882-2897. [PMID: 31094085 DOI: 10.1002/cssc.201900914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The sustainable synthesis of relevant scaffolds for their use in the pharmaceutical, agrochemical, and materials sectors constitutes one of the most urgent challenges that the chemical community needs to overcome. In this context, the development of innovative and more efficient catalytic processes based on a fundamental understanding of the underlying reaction mechanisms remains a largely unresolved challenge for academic and industrial chemists. Herein, selected examples of computational and experimental knowledge-driven approaches for the rational design of transition-metal-catalyzed transformations are discussed.
Collapse
Affiliation(s)
- Jesús Sanjosé-Orduna
- Institute of Chemical Research of Catalonia, ICIQ), Avgda. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Ángel L Mudarra
- Institute of Chemical Research of Catalonia, ICIQ), Avgda. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Sara Martínez de Salinas
- Institute of Chemical Research of Catalonia, ICIQ), Avgda. Països Catalans 16, 43007, Tarragona, Spain
| | - Mónica H Pérez-Temprano
- Institute of Chemical Research of Catalonia, ICIQ), Avgda. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
33
|
Sanjosé-Orduna J, Benet-Buchholz J, Pérez-Temprano MH. Unravelling Molecular Aspects of the Migratory Insertion Step in Cp*CoIII Metallacyclic Systems. Inorg Chem 2019; 58:10569-10577. [DOI: 10.1021/acs.inorgchem.9b01111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jesús Sanjosé-Orduna
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Mónica H. Pérez-Temprano
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
34
|
Chen P, Nan J, Hu Y, Ma Q, Ma Y. RuII-Catalyzed/NH2-Assisted Selective Alkenyl C–H [5 + 1] Annulation of Alkenylanilines with Sulfoxonium Ylides to Quinolines. Org Lett 2019; 21:4812-4815. [DOI: 10.1021/acs.orglett.9b01702] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Qiong Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|
35
|
Cornaton Y, Djukic JP. A noncovalent interaction insight onto the concerted metallation deprotonation mechanism. Phys Chem Chem Phys 2019; 21:20486-20498. [DOI: 10.1039/c9cp03650d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CMD/AMLA mechanisms of cyclopalladation and the parent fictitious cyclonickelation of N,N-dimethylbenzylamine have been investigated by joint DFT-D and DLPNO-CCSD(T) methods assisted by QTAIM.
Collapse
Affiliation(s)
- Yann Cornaton
- Laboratoire de Mathématiques et de Physique
- F-66860 Perpignan
- France
- Institut de Chimie de Strasbourg
- UMR 7177
| | | |
Collapse
|
36
|
Yu Y, Wu Q, Liu D, Yu L, Tan Z, Zhu G. Synthesis of 1-naphthols via Cp*Co(iii)-catalyzed C–H activation and cyclization of sulfoxonium ylides with alkynes. Org Chem Front 2019. [DOI: 10.1039/c9qo00994a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly practical synthesis of 1-naphthols was developed via Cp*Co(iii)-catalyzed C–H activation and cyclization between sulfoxonium ylides and alkynes.
Collapse
Affiliation(s)
- Yongqi Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qianlong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Da Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Lin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Gangguo Zhu
- Department of Chemistry
- Zhejiang Normal University
- Jinhua 321004
- P. R. China
| |
Collapse
|
37
|
Chaitanya M, Anbarasan P. Recent developments and applications of cyanamides in electrophilic cyanation. Org Biomol Chem 2018; 16:7084-7103. [DOI: 10.1039/c8ob01770k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review summarizes the recent developments and applications of readily accessible cyanamides in the electrophilic cyanation of various nucleophiles.
Collapse
Affiliation(s)
- Manthena Chaitanya
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| | | |
Collapse
|