1
|
Javahershenas R, Nikzat S. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles. ULTRASONICS SONOCHEMISTRY 2024; 102:106741. [PMID: 38176128 PMCID: PMC10793181 DOI: 10.1016/j.ultsonch.2023.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Ultrasonic irradiation serves as a vigorous and environmentally sustainable approach for augmenting multicomponent reactions (MCRs), offering benefits such as thermal enhancement, agitation, and activation, among others. Malononitrile emerges as a versatile reagent in this context, participating in a myriad of MCRs to produce structurally diverse heterocyclic frameworks. This review encapsulates the critical role of malononitrile in the sonochemical multicomponent synthesis of these heterocyclic structures. The paper further delves into the biochemical and pharmacological implications of these heterocycles, elucidating their reaction mechanisms as well as delineating the method's scope and limitations. We furnish an overview of the merits and challenges inherent to this synthetic approach and offer insights for potential avenues in future research.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Sahand Nikzat
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
2
|
Poonia T, van Wijngaarden J. Exploring the distinct conformational preferences of allyl ethyl ether and allyl ethyl sulfide using rotational spectroscopy and computational chemistry. J Chem Phys 2023; 158:2895228. [PMID: 37290071 DOI: 10.1063/5.0153479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
The conformational energy landscapes of allyl ethyl ether (AEE) and allyl ethyl sulfide (AES) were investigated using Fourier transform microwave spectroscopy in the frequency range of 5-23 GHz aided by density functional theory B3LYP-D3(BJ)/aug-cc-pVTZ calculations. The latter predicted highly competitive equilibria for both species, including 14 unique conformers of AEE and 12 for the sulfur analog AES within 14 kJ mol-1. The experimental rotational spectrum of AEE was dominated by transitions arising from its three lowest energy conformers, which differ in the arrangement of the allyl side chain, while in AES, transitions due to the two most stable forms, distinct in the orientation of the ethyl group, were observed. Splitting patterns attributed to methyl internal rotation were analyzed for AEE conformers I and II, and the corresponding V3 barriers were determined to be 12.172(55) and 12.373(32) kJ mol-1, respectively. The experimental ground state geometries of both AEE and AES were derived using the observed rotational spectra of the 13C and 34S isotopic species and are highly dependent on the electronic properties of the linking chalcogen (oxygen vs sulfur). The observed structures are consistent with a decrease in hybridization in the bridging atom from oxygen to sulfur. The molecular-level phenomena that drive the conformational preferences are rationalized through natural bond orbital and non-covalent interaction analyses. These show that interactions involving the lone pairs on the chalcogen atom with the organic side chains favor distinct geometries and energy orderings for the conformers of AEE and AES.
Collapse
Affiliation(s)
- Tamanna Poonia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jennifer van Wijngaarden
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
3
|
Goulart HA, Araujo DR, Iarocz LEB, Pizzi BR, Barcellos T, Silva MS, Perin G. Synthesis of Phosphate Esters by Using Diphenyl Ditelluride as Organocatalyst. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Helen A. Goulart
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Daniela R. Araujo
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Lucas E. B. Iarocz
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Bruna R. Pizzi
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul – UCS 95070-560 Caxias do Sul RS Brazil
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| |
Collapse
|
4
|
Multicomponent Synthesis of Unsymmetrical Derivatives of 4-Methyl-Substituted 5-Nitropyridines. Processes (Basel) 2023. [DOI: 10.3390/pr11020576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The multicomponent reaction of 2-nitroacetophenone (or nitroacetone), acetaldehyde diethyl acetal, β-dicarbonyl compound, and ammonium acetate in an acetic acid solution allowed the acquisition of previously undescribed 4-methyl-substituted derivatives of 5-nitro-1,4-dihydropyridine in satisfactory yields. The oxidation of the obtained 5-nitro-1,4-dihydropyridine derivatives resulted in the corresponding 2,4-dimethyl-5-nitropyridines. In addition, for the first time in the synthesis of unsymmetrical 1,4-dihydropyridines by the Hantzsch reaction acetaldehyde, diethyl acetal was used as a source of acetaldehyde. The use of more volatile and sufficiently reactive acetaldehyde in this reaction did not lead to a controlled synthesis of unsymmetrical 5-nitro-1,4-dihydropyridines. The proposed multicomponent approach to the synthesis of 4-methyl-substituted 5-nitro-1,4-dihydropyridines and their subsequent aromatization into pyridines made it possible to obtain previously undescribed and hardly accessible substituted 5(3)-nitropyridines.
Collapse
|
5
|
Comparison of the Conventional and Mechanochemical Syntheses of Cyclodextrin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020467. [PMID: 36677527 PMCID: PMC9861519 DOI: 10.3390/molecules28020467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Many scientists are working hard to find green alternatives to classical synthetic methods. Today, state-of-the-art ultrasonic and grinding techniques already drive the production of organic compounds on an industrial scale. The physicochemical and chemical behavior of cyclodextrins often differs from the typical properties of classic organic compounds and carbohydrates. The usually poor solubility and complexing properties of cyclodextrins can require special techniques. By eliminating or reducing the amount of solvent needed, green alternatives can reform classical synthetic methods, making them attractive for environmentally friendly production and the circular economy. The lack of energy-intensive synthetic and purification steps could transform currently inefficient processes into feasible methods. Mechanochemical reaction mechanisms are generally different from normal solution-chemistry mechanisms. The absence of a solvent and the presence of very high local temperatures for microseconds facilitate the synthesis of cyclodextrin derivatives that are impossible or difficult to produce under classical solution-chemistry conditions. Although mechanochemistry does not provide a general solution to all problems, several good examples show that this new technology can open up efficient synthetic pathways.
Collapse
|
6
|
Alizadeh A, Rostampoor A, Alipour M, Hajipour-Verdom B, Abdolmaleki P. Ultrasound-promoted synthesis of novel N-arylamino-3,5′-biquinoline derivatives: their applications in live-cell imaging and in vitro anticancer activity evaluation. NEW J CHEM 2023. [DOI: 10.1039/d2nj04444g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel strategy for the construction of functionalized N-arylamino-3,5′-biquinoline has been developed.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Azar Rostampoor
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Mozhgan Alipour
- Department of Biophysics, Tarbiat Modares University, Tehran, 14115-154, Iran
| | | | - Parviz Abdolmaleki
- Department of Biophysics, Tarbiat Modares University, Tehran, 14115-154, Iran
| |
Collapse
|
7
|
Nikseresht A, Bagherinia R, Mohammadi M, Mehravar R. Phosphomolybdic acid hydrate encapsulated in MIL-53 (Fe): a novel heterogeneous heteropoly acid catalyst for ultrasound-assisted regioselective nitration of phenols. RSC Adv 2022; 13:674-687. [PMID: 36605662 PMCID: PMC9783539 DOI: 10.1039/d2ra07077d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, a heterogeneous catalyst, PMA@MIL-53 (Fe) (MIL ⇒ Matériaux de l'Institut Lavoisier), has been used to replace the usual mineral acids such as sulfuric acid. A wide variety of nitration methods require the use of a mixture of acids such as concentrated nitric acid and sulfuric acid, which result in producing a large amount of acidic waste. During recent years, the use of the heterogeneous system for the nitration of aromatic compounds has been highly considered and used by chemists due to some specific advantages, i.e. easy separation of the product from the reaction mixture, the possibility of recycling and reusing the catalyst, etc. Herein, the catalyst was synthesized using a metal-organic framework and a heteropoly phosphomolybdic acid. The PMA@MIL-53 (Fe) was prepared using a similar method of MIL-53 (Fe) synthesis. Afterwards, FeCl3·6H2O and 1,4-benzene dicarboxylic acid (BDC) in a dimethylformamide solution were placed in an ultrasound bath and, then, HPA (heteropoly acid) was added to the reaction mixture. The PMA (phosphomolybdic acid) encapsulation in MIL-53 (Fe) was confirmed using various analysis. Under optimal conditions, the catalytic activity of PMA@MIL-53 (Fe) was evaluated in nitration of phenol under ultrasonic waves. Besides, the ratio of the two products of ortho and para was obtained using GC. Optimum conditions were reached after 15 minutes, in such a way that the loaded PMA was 0.02 g under optimal conditions, the efficiencies of ortho-nitrophenol and para nitrophenol were 54.98 and 45.01, respectively.
Collapse
Affiliation(s)
- Ahmad Nikseresht
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Rasoul Bagherinia
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | - Reza Mehravar
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| |
Collapse
|
8
|
Nagasundaram N, Padmasree K, Santhosh S, Vinoth N, Sedhu N, Lalitha A. Ultrasound promoted synthesis of new azo fused dihydropyrano[2,3-c]pyrazole derivatives: In vitro antimicrobial, anticancer, DFT, in silico ADMET and Molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Nasuhipur F, Ghasemi Z, Shahrisa A, Arsalani N. Ultrasound promoted three‐component synthesis of dihydroindeno[1,2‐
b
]pyrrole derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Forough Nasuhipur
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Zarrin Ghasemi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Aziz Shahrisa
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| |
Collapse
|
10
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
11
|
Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes. ENERGIES 2022. [DOI: 10.3390/en15082858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chemical industry is considered to be one of the largest consumers of energy in the manufacturing sector. As the cost of energy is rising rapidly, coupled with the increasingly stringent standards for the release of harmful chemicals and gases into the environment, more attention is now focused on developing energy efficient chemical processes that could significantly reduce both operational costs and greenhouse gas emissions. Alkene epoxidation is an important chemical process as the resultant epoxides are highly reactive compounds that are used as platform chemicals for the production of commercially important products for flavours, fragrances, paints and pharmaceuticals. A number of epoxidation methods have been developed over the past decade with the ultimate aim of minimising waste generation and energy consumption. In this review paper, some of the recent advances in epoxides synthesis using energy efficient processes are discussed. The epoxidation methods may provide sustainability in terms of environmental impact and energy consumption.
Collapse
|
12
|
Azeredo JB, Penteado F, Nascimento V, Sancineto L, Braga AL, Lenardao EJ, Santi C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules 2022; 27:1597. [PMID: 35268698 PMCID: PMC8911681 DOI: 10.3390/molecules27051597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.
Collapse
Affiliation(s)
- Juliano B. Azeredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Uruguaiana 97501-970, RS, Brazil;
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Vanessa Nascimento
- Laboratório SupraSelen, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niteroi 24020-150, RJ, Brazil
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianopolis 88040-900, SC, Brazil;
| | - Eder João Lenardao
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| |
Collapse
|
13
|
Devi M, Singh R, Sindhu J, Kumar A, Lal S, Kumar R, Hussain K, Sachdeva M, Singh D, Kumar P. Sonochemical Protocols for Heterocyclic Synthesis: A Representative Review. Top Curr Chem (Cham) 2022; 380:14. [PMID: 35149908 DOI: 10.1007/s41061-022-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
In the present era of the industrial revolution, we all are familiar with ever-increasing environmental pollution released from various chemical processes. Chemical production has had a severe impact on the environment and human health. For the betterment of our environment, the chemical community has turned their interest to developing green, harmless and sustainable synthetic processes. To accomplish these goals of green chemistry, the extraordinary properties of sonication play an important role. It is well known that sonochemistry can make decisive contributions to creating high pressures of almost 1000 atm and very high temperatures in the range of 4500-5000 °C. The implementation of ultrasound in chemical transformations somehow fulfils the measures of green chemistry, as it reduces energy consumption, enhances product selectivity, and uses lesser amounts of hazardous chemicals and solvents. Furthermore, heterocyclic synthesis under ultrasonication offers several environmental and process-related advantages compared with conventional methods. The remarkable contribution of ultrasonics to the development of green and sustainable synthetic routes inspired us to write this article. Herein, we have discussed only some of the various synthetic methodologies developed for the construction of heterocyclic cores under ultrasonic irradiation, accompanied by mechanistic insights. In some cases, a comparison between sonochemical conditions and conventional conditions has also been investigated. We emphasized principally 'up to date' developments on various sono-accelerated chemical transformations comprising aza-Michael, aldol reactions, C-C couplings, oxidation, cycloadditions, multi-component reactions, etc. for the synthesis of heterocycles.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS & H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Guru Jambheshwar University of Science and Technology, Department of Pharmaceutical Sciences, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, 122107, India
| | - Megha Sachdeva
- Department of Chemistry, Center of Advanced Study in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
14
|
Oboudatian HS, Safaei-Ghomi J. Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation. Sci Rep 2022; 12:2381. [PMID: 35149718 PMCID: PMC8837639 DOI: 10.1038/s41598-022-05993-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrous nano-silica sphere (KCC-1) has appeared as a good and efficient catalyst for ultrasonic irradiation conditions in chemical reactions. This catalyst has the unique properties such as a fibrous surface morphology, high surface area and high mechanical stability. The results indicated that the KCC-1 nanocatalyst could be used as high-performance catalysts under high temperature and pressure condition in organic reaction under ultrasonic irradiation. Morphology, structure, and composition of the fibrous nano-silica sphere were described by N2 adsorption-desorption analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). In this work, we used KCC-1@NH2 nanosilica as a basic catalyst for the preparation of chromenes under ultrasonic irradiation conditions for the first time. The recyclability, nontoxicity and high stability of the catalyst, combined with low reaction times and excellent yields, make the present protocol very useful for the synthesis of the title products under ultrasonic conditions. The produced products were confirmed via 1H NMR, 13C NMR, FT-IR analysis.
Collapse
Affiliation(s)
- Hourieh Sadat Oboudatian
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| |
Collapse
|
15
|
Ziarani GM, Khademi M, Mohajer F, Yadav S, Tomar R. Recent Advances in the Application of Barbituric Acid Derivatives in Multicomponent Reactions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272826666211229150318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Barbituric acid is a pyrimidine heterocyclic organic compound, which is pharmacologically active. It is important to build structures containing various medicinal activities. This compound attracts the scientific research community in organic synthesis. It can be used in the synthesis of polyheterocyclic, natural, medicinal compounds, and organic sensors. Herein, the utilization of barbituric or thiobarbituric acid in multicomponent reactions is reported from 2016-2021 in this manuscript.
Collapse
Affiliation(s)
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran Iran
| | - Sangeete Yadav
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, India
| | - Ravi Tomar
- Department of Chemistry, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, India
| |
Collapse
|
16
|
Mittersteiner M, Farias FFS, Bonacorso HG, Martins MAP, Zanatta N. Ultrasound-assisted synthesis of pyrimidines and their fused derivatives: A review. ULTRASONICS SONOCHEMISTRY 2021; 79:105683. [PMID: 34562732 PMCID: PMC8473776 DOI: 10.1016/j.ultsonch.2021.105683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 06/09/2023]
Abstract
The pyrimidine scaffold is present in many bioactive drugs; therefore, efficient synthetic routes that provide shorter reaction times, higher yields, and site-selective reactions are constantly being sought. Ultrasound (US) irradiation has emerged as an alternative energy source in the synthesis of these heterocyclic scaffolds, and over the last ten years there has been a significant increase in the number of publications mentioning US in either the construction or derivatization of the pyrimidine core. This review presents a detailed summary (with 140 references) of the effects of US (synergic or not) on the construction and derivatization of the pyrimidine core through classical reactions (e.g., multicomponent, cyclocondensation, cycloaddition, and alkylation reactions). The main points that were taken into consideration are as follows: chemo- and regioselectivity issues, and the results of conventional heating methods compared to US and mechanistic insights that are also presented and discussed for key reactions.
Collapse
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| | - Fellipe F S Farias
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| |
Collapse
|
17
|
Martínez RF, Cravotto G, Cintas P. Organic Sonochemistry: A Chemist's Timely Perspective on Mechanisms and Reactivity. J Org Chem 2021; 86:13833-13856. [PMID: 34156841 PMCID: PMC8562878 DOI: 10.1021/acs.joc.1c00805] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 01/17/2023]
Abstract
Sonochemistry, the use of sound waves, usually within the ultrasonic range (>20 kHz), to boost or alter chemical properties and reactivity constitutes a long-standing and sustainable technique that has, however, received less attention than other activation protocols despite affordable setups. Even if unnecessary to underline the impact of ultrasound-based strategies in a broad range of chemical and biological applications, there is considerable misunderstanding and pitfalls regarding the interpretation of cavitational effects and the actual role played by the acoustic field. In this Perspective, with an eye on mechanisms in particular, we discuss the potentiality of sonochemistry in synthetic organic chemistry through selected examples of past and recent developments. Such examples illustrate specific controlling effects and working rules. Looking back at the past while looking forward to advancing the field, some essentials of sonochemical activation will be distilled.
Collapse
Affiliation(s)
- R. Fernando Martínez
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Giancarlo Cravotto
- Dipartimento
di Scienza e Tecnologia del Farmaco, Universita
degli Studi di Torino, via P. Giuria 9, Torino 10125, Italy
| | - Pedro Cintas
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
18
|
Machado IV, Dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. ULTRASONICS SONOCHEMISTRY 2021; 78:105704. [PMID: 34454180 PMCID: PMC8406036 DOI: 10.1016/j.ultsonch.2021.105704] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 06/06/2023]
Abstract
Ultrasound is an essential technique to improve organic synthesis from the point of view of green chemistry, as it can promote better yields and selectivities, in addition to shorter reaction times when compared to the conventional methods. Heterogeneous catalysis is another pillar of sustainable chemistry being the recycling and reuse of the catalysts one of its great advantage. In the other hand, multicomponent reactions provide the synthesis of structurally diverse compounds, in a one-pot fashion, without isolation and purification of intermediates. Thus, the combination of these protocols has proved to be a powerful tool to obtain biologically active organic compounds with lower costs, time and energy consumption. Herein, we provide a comprehensive overview of advances on methods of organic synthesis that have been reported over the past ten years with focus on ultrasound-assisted multicomponent reactions under heterogeneous catalysis. In particular, we present pharmacologically important N- and O-heterocyclic compounds, considering their synthetic methods using green solvents, and catalyst recycling.
Collapse
Affiliation(s)
- Ingrid V Machado
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Jhonathan R N Dos Santos
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marcelo A P Januario
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Elyasi Z, Ghomi JS, Najafi GR. Ultrasound-Engineered fabrication of immobilized molybdenum complex on Cross-Linked poly (Ionic Liquid) as a new acidic catalyst for the regioselective synthesis of pharmaceutical polysubstituted spiro compounds. ULTRASONICS SONOCHEMISTRY 2021; 75:105614. [PMID: 34111724 PMCID: PMC8193147 DOI: 10.1016/j.ultsonch.2021.105614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 05/16/2023]
Abstract
A novel supported molybdenum complex on cross-linked poly (1-Aminopropyl-3-vinylimidazolium bromide) entrapped cobalt oxide nanoparticles has been successfully fabricated through two different procedures, i.e. ultrasound (US) irradiations (100 W, 40 kHz) and reflux. The efficiency of the two different methods was comparatively investigated on the fundamental properties of proposed catalyst using diverse characterization techniques. Based on the obtained results, the ultrasonication method provides controlled polymerization process; as a result, well connected polymeric network is formed. In addition, the use of ultrasound waves turned out to be able to increase the particles uniformity, specific surface area (from 79.19 to 223.83 m2/g), and the onset thermal degradation temperature (Td) value (from 248 to 400 °C) of the prepared catalyst which intensifies the catalytic efficiency. Besides, US-treated catalyst demonstrated high chemical stability and maintained its cross-linked network after eight cycles recovery, while the cross-linked network of catalyst obtained under silent condition was completely disrupted. Furthermore, the ultrafast multi-step fabrication procedure was performed in less than 6 h under ultrasonic condition while a similar process promoted by a mechanical stirring method came to a conclusion after 5-6 days. Accordingly, the utility of the ultrasound irradiation was proved, and US-treated catalyst was applied for improved synthetic methodology of spiro 1,4-dihydropyridines and spiro pyranopyrazoles through different acidic active sites. Due to the significant synergistic influence between the proposed catalyst and US irradiation, a variety of novel and recognized mono-spiro compounds were fabricated at room temperature in high regioselectivity.
Collapse
Affiliation(s)
- Zahra Elyasi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran
| | - Javad Safaei Ghomi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran; Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Islamic Republic of Iran.
| | - Gholam Reza Najafi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran
| |
Collapse
|
20
|
Nikoofar K, Shahriyari F. Ultrasound-assisted aqua-mediated synthesis of multi-substituted tetrahydropyridine-3-carboxylates using N-carboxymethyl-3-pyridinium hydrogensulfate ([N-CH2CO2H-3-pic]+HSO4−) as a new efficient ionic liquid catalyst. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04671-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractA simple, straightforward, and ultrasound-promoted method for the preparation of some highly functionalized tetrahydropyridines reported via pseudo five-component reaction of (hetero)aromatic aldehydes, different anilines, and alkyl acetoacetates in the presence of [N-CH2CO2H-3-pic]+HSO4−, as a novel ionic liquid, in green aqueous medium. The IL was synthesized utilizing simple and easily-handled substrates and characterized by FT-IR, 1H NMR, 13C NMR, GC-MASS, FESEM, EDX, and TGA/DTG techniques. The procedure contains some highlighted aspects which are: (a) performing the MCR in the presence of aqua and sonic waves, as two main important and environmentally benign indexes in green and economic chemistry, (b) high yields of products within short reaction times, (c) convenient work-up procedure, (d) preparing the new IL via simple substrates and procedure.
Collapse
|
21
|
Saranya S, Radhika S, Afsina Abdulla CM, Anilkumar G. Ultrasound irradiation in heterocycle synthesis: An overview. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
22
|
Sacramento M, Costa GP, Barcellos AM, Perin G, Lenardão EJ, Alves D. Transition-metal-free C-S, C-Se, and C-Te Bond Formation from Organoboron Compounds. CHEM REC 2021; 21:2855-2879. [PMID: 33735500 DOI: 10.1002/tcr.202100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.
Collapse
Affiliation(s)
- Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gabriel P Costa
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
23
|
Subashini C, Kennedy LJ, Singh FV. Synthesis, spectral characterization and photophysical studies of tetrahydroquinolines. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Virgin and chemically functionalized amino acids as green corrosion inhibitors: Influence of molecular structure through experimental and in silico studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Alizadeh A, Farajpour B, Knedel TO, Janiak C. Synthesis of Substituted Phthalimides via Ultrasound-Promoted One-Pot Multicomponent Reaction. J Org Chem 2021; 86:574-580. [PMID: 33226238 DOI: 10.1021/acs.joc.0c02245] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a novel strategy for the straightforward synthesis of substituted phthalimides is described, which includes base-mediated Michael addition/intramolecular cyclization/[1,5]-H shift/cleavage of CS2/aromatization/nucleophilic acyl substitution reaction of 2-(4-oxo-2-thioxothiazolidin-5-ylidene)acetates and α,α-dicyanoolefines under ultrasound (US) irradiation. Some advantages of this method are as follows: having simple operation, easily accessible starting materials, chemoselective cascade process, synthetically useful yields, and green conditions by utilizing US irradiation as a source of energy and using ethanol as solvent.
Collapse
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Behnaz Farajpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Tim-Oliver Knedel
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie, und Strukturchemie Heinrich-Heine-Universität Düsseldorf, I40225 Düsseldorf, Germany
| |
Collapse
|
26
|
|
27
|
Triazines as a potential class of corrosion inhibitors: Present scenario, challenges and future perspectives. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114747] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Silva MS, Alves D, Hartwig D, Jacob RG, Perin G, Lenardão EJ. Selenium‐NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Márcio S. Silva
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Diego Alves
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Daniela Hartwig
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Raquel G. Jacob
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Gelson Perin
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| |
Collapse
|
29
|
Saady A, Sudhakar P, Nassir M, Gedanken A. Ultrasonic assisted synthesis of styrylpyridinium dyes: Optical properties and DFT calculations. ULTRASONICS SONOCHEMISTRY 2020; 67:105182. [PMID: 32485662 DOI: 10.1016/j.ultsonch.2020.105182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
The ultrasonic technique has received considerable attention in several fields; in particular, it gained rapid momentum in organic synthesis due to the larger reaction rates, milder reaction conditions, and better yields. We report herein a facile synthesis of a series of styrylpyridinium based dyes under ultrasonic irradiation. Within short reaction time (15 min) under ultrasonic irradiation, compared to normal laboratory conditions, (4-16 h), we can achieve good to excellent yields. The reaction time is shortened because ultrasound can accelerate the generation of the nucleophile of the pyridinium salt and subsequently a nucleophilic addition of an aldehyde followed by dehydration affords the styrylpyridinium dye, (Knoevenagel condensation). The photophysical properties of all compounds are comprehensively investigated in different solvents. All the compounds exhibit negative solvatochromism both in absorption and fluorescence emission spectra. Such behavior is due to the higher dipole moment of these molecules at the ground state. DFT calculations were performed to understand the electronic structure of the molecules. Our results show the high efficacy of sonochemistry over other methods for preparation of styrylpyridinium dyes.
Collapse
Affiliation(s)
- Abed Saady
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pagidi Sudhakar
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Molhm Nassir
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
30
|
Penteado F, Bettanin L, Machado K, Perin G, Alves D, Lenardão EJ. Sonochemistry and Copper Catalysis: An Efficient Duo in the Synthesis of Chalcogenylindolizines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Filipe Penteado
- LASOL – CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Luana Bettanin
- LASOL – CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Kethelyn Machado
- LASOL – CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Gelson Perin
- LASOL – CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Diego Alves
- LASOL – CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| | - Eder J. Lenardão
- LASOL – CCQFA Universidade Federal de Pelotas - UFPel P.O. Box 354 96010-900 Pelotas RS Brazil
| |
Collapse
|
31
|
Soares LK, Barcellos AM, Neto JSS, Alves D, Lenardão EJ, Rosati O, Santi C, Perin G. Dichalcogenides/Oxone
®
‐Mediated Cyclization of (
Z
)‐Chalcogenoenynes under Ultrasound Irradiation. ChemistrySelect 2020. [DOI: 10.1002/slct.202002252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liane K. Soares
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFAUniversidade Federal de Pelotas-UFPel P. O. Box 354, 96010–900 Pelotas, RS Brazil
| | - Angelita M. Barcellos
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFAUniversidade Federal de Pelotas-UFPel P. O. Box 354, 96010–900 Pelotas, RS Brazil
| | - José S. S. Neto
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFAUniversidade Federal de Pelotas-UFPel P. O. Box 354, 96010–900 Pelotas, RS Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFAUniversidade Federal de Pelotas-UFPel P. O. Box 354, 96010–900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFAUniversidade Federal de Pelotas-UFPel P. O. Box 354, 96010–900 Pelotas, RS Brazil
| | - Ornelio Rosati
- Department of Pharmaceutical Sciences-University of Perugia - Via del Liceo, 1 Perugia (PG) Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences-University of Perugia - Via del Liceo, 1 Perugia (PG) Italy
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFAUniversidade Federal de Pelotas-UFPel P. O. Box 354, 96010–900 Pelotas, RS Brazil
| |
Collapse
|
32
|
Auria-Luna F, Fernández-Moreira V, Marqués-López E, Gimeno MC, Herrera RP. Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies. Sci Rep 2020; 10:11594. [PMID: 32665694 PMCID: PMC7360557 DOI: 10.1038/s41598-020-68076-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
A simple approach to synthesize new highly substituted 4H-pyran derivatives is described. Efficient Et3N acts as a readily accessible catalyst of this process performed in pure water and with only a 20 mol% of catalyst loading. The extremely simple operational methodology, short reaction times, clean procedure and excellent product yields render this new approach extremely appealing for the synthesis of 4H-pyrans, as potentially biological scaffolds. Additionally, DNA interaction analysis reveals that 4H-pyran derivatives behave preferably as minor groove binders over major groove or intercalators. Therefore, this is one of the scarce examples where pyrans have resulted to be interesting DNA binders with high binding constants (Kb ranges from 1.53 × 104 M-1 to 2.05 × 106 M-1).
Collapse
Affiliation(s)
- Fernando Auria-Luna
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Eugenia Marqués-López
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain.
| |
Collapse
|
33
|
Chevallier ML, Dessolin S, Serres F, Bruyas L, Chatel G. Effect of Ultrasound on the Green Selective Oxidation of Benzyl Alcohol to Benzaldehyde. Molecules 2019; 24:E4157. [PMID: 31744122 PMCID: PMC6891642 DOI: 10.3390/molecules24224157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Oxidation of alcohols plays an important role in industrial chemistry. Novel green techniques, such as sonochemistry, could be economically interesting by improving industrial synthesis yield. In this paper, we studied the selective oxidation of benzyl alcohol as a model of aromatic alcohol compound under various experimental parameters such as substrate concentration, oxidant nature and concentration, catalyst nature and concentration, temperature, pH, reaction duration, and ultrasound frequency. The influence of each parameter was studied with and without ultrasound to identify the individual sonochemical effect on the transformation. Our main finding was an increase in the yield and selectivity for benzaldehyde under ultrasonic conditions. Hydrogen peroxide and iron sulfate were used as green oxidant and catalyst. Coupled with ultrasound, these conditions increased the benzaldehyde yield by +45% compared to silent conditions. Investigation concerning the transformation mechanism revealed the involvement of radical species.
Collapse
Affiliation(s)
| | | | | | | | - Gregory Chatel
- Univ. Savoie Mont Blanc, LCME, F-73000 Chambéry, France; (M.L.C.); (S.D.); (F.S.); (L.B.)
| |
Collapse
|
34
|
Arafa WAA, Mourad AK. New dicationic DABCO-based ionic liquids: a scalable metal-free one-pot synthesis of bis-2-amino-5-arylidenethiazol-4-ones. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190997. [PMID: 31417768 PMCID: PMC6689602 DOI: 10.1098/rsos.190997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Herein, a novel DABCO-based dicationic ionic liquid (bis-DIL) was easily prepared from the sonication of DABCO with 1,3-dichloro-2-propanol and then characterized by several techniques. Thereafter, under the ultimate green conditions, the performance of the bis-DIL was examined for the sono-synthesis of a new library of bis-2-amino-5-arylidenethiazol-4-ones via one-pot pseudo-five-component Knoevenagel condensation reaction of appropriate dialdehydes, rhodanine and amines. This protocol is tolerant towards several mono- and dialdehydes, excellently high yielding and affording access to the desired products in a single step within a short reaction time. Compared with the conventional methodologies, the proposed method displayed several remarkable merits such as milder reaction conditions without any side product, green solvent media, recording well in a variety of green metrics and applicability in gram-scale production. The recyclability of the bis-DIL was also investigated with an average recovered yield of 97% for six sequential cycles without any significant loss of the activity.
Collapse
Affiliation(s)
- Wael A. A. Arafa
- Chemistry Department, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Fayoum University, PO Box 63514, Fayoum City, Egypt
| | - Asmaa K. Mourad
- Chemistry Department, Faculty of Science, Fayoum University, PO Box 63514, Fayoum City, Egypt
| |
Collapse
|
35
|
Santi C. Perspective in Green Chemistry for Organoselenium Compounds (no more an oxymoron). CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/221334610601190329164654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Claudio Santi
- Group of Catalysis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1-06100 Perugia, Italy
| |
Collapse
|