Sandvoß A, Maag H, Daniliuc CG, Schollmeyer D, Wahl JM. Dynamic kinetic resolution of transient hemiketals: a strategy for the desymmetrisation of prochiral oxetanols.
Chem Sci 2022;
13:6297-6302. [PMID:
35733901 PMCID:
PMC9159106 DOI:
10.1039/d2sc01547a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of an electron poor trifluoroacetophenone allows the formation of uniquely stable hemiketals from prochiral oxetanols. When exposed to a cobalt(ii) catalyst, efficient ring-opening to densely functionalized dioxolanes is observed. Mechanistic studies suggest an unprecedented redox process between the cobalt(ii) catalyst and the hemiketal that initiates the oxetane-opening. Based on this observation, a dynamic kinetic resolution of the transient hemiketals is explored that uses a Katsuki-type ligand for stereoinduction (up to 99 : 1 dr and 96 : 4 er) and allows a variety of 1,3-dioxolanes to be accessed (20 examples up to 98% yield).
Desymmetrization of prochiral oxetanols via an electron-deficient hemiketal intermediate is achieved. Key to this process is the catalyst's chiral recognition of one of the two hemiketal enantiomers enabling an efficient dynamic kinetic resolution.![]()
Collapse