1
|
Shao C, Ma C, Li L, Liu J, Shen Y, Chen C, Yang Q, Xu T, Hu Z, Kan Y, Zhang T. Copper-promoted C5-selective bromination of 8-aminoquinoline amides with alkyl bromides. Beilstein J Org Chem 2024; 20:155-161. [PMID: 38292044 PMCID: PMC10825800 DOI: 10.3762/bjoc.20.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
An efficient and practical method for the synthesis of C5-brominated 8-aminoquinoline amides via a copper-promoted selective bromination of 8-aminoquinoline amides with alkyl bromides was developed. The reaction proceeds smoothly in dimethyl sulfoxide (DMSO) under air, employing activated and unactivated alkyl bromides as the halogenation reagents without additional external oxidants. This method features outstanding site selectivity, broad substrate scope, and excellent yields.
Collapse
Affiliation(s)
- Changdong Shao
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Chen Ma
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Li Li
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Jingyi Liu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Yanan Shen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Chen Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Qionglin Yang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Tianyi Xu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Zhengsong Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Yuhe Kan
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| | - Tingting Zhang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China
| |
Collapse
|
2
|
Festa AA, Storozhenko OA, Voskressensky LG, Van der Eycken EV. Visible light-mediated halogenation of organic compounds. Chem Soc Rev 2023. [PMID: 37975853 DOI: 10.1039/d3cs00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The use of visible light and photoredox catalysis emerged as a powerful and sustainable tool for organic synthesis, showing high value for distinctly different ways of bond creation. Halogenated compounds are the cornerstone of contemporary organic synthesis: it is almost impossible to develop a route towards a pharmaceutical reagent, agrochemical, natural product, etc. without the involvement of halogen-containing intermediates. Moreover, the halogenated derivatives as final products became indispensable for drug discovery and materials science. The idea of this review is to understand and summarise the impact of visible light-promoted chemistry on halogenation and halofunctionalisation reactions.
Collapse
Affiliation(s)
- Alexey A Festa
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, Moscow, 117198, Russian Federation.
| | - Olga A Storozhenko
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, Moscow, 117198, Russian Federation.
| | - Leonid G Voskressensky
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, Moscow, 117198, Russian Federation.
| | - Erik V Van der Eycken
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, Moscow, 117198, Russian Federation.
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
3
|
Shao C, Xu T, Chen C, Yang Q, Tang C, Chen P, Lu M, Hu Z, Hu H, Zhang T. Copper-catalyzed selective C5-H bromination and difluoromethylation of 8-aminoquinoline amides using ethyl bromodifluoroacetate as the bifunctional reagent. RSC Adv 2023; 13:6993-6999. [PMID: 36874938 PMCID: PMC9977446 DOI: 10.1039/d3ra00088e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
A simple and effective method for the copper-catalyzed selective C5-H bromination and difluoromethylation of 8-aminoquinoline amides with ethyl bromodifluoroacetate as the bifunctional reagent was developed. The combination of cupric catalyst and alkaline additive results in a C5-bromination reaction, whereas cuprous catalyst combined with silver additive results in the C5-difluoromethylation reaction. This method has a broad substrate scope and allows for easy and convenient access to desired C5-functionalized quinolones with good to excellent yields.
Collapse
Affiliation(s)
- Changdong Shao
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Tianyi Xu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Chen Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Qionglin Yang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Chao Tang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Ping Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Mingzhu Lu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Zhengsong Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Huayou Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| | - Tingting Zhang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an 223300 Jiangsu China
| |
Collapse
|
4
|
Dinda TK, Mal P. Activation of C-Br Bond of CBr 4 and CBrCl 3 Using 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. J Org Chem 2023; 88:573-584. [PMID: 36516984 DOI: 10.1021/acs.joc.2c02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report the activation of the C-Br bond of CBrX3 (X = Cl, Br) using 9-mesityl-10-methylacridinium perchlorate as a visible-light (12W blue LED, 450-455 nm) photocatalyst for the synthesis of gem-dihaloenones from terminal alkynes. An electron transfer from CBrX3 to Mes-Acr-MeClO4 led to the formation of •+CBrX3 which subsequently resulted in the intermediate +CX3. Next, C-C cross-coupling of +CX3 with terminal alkynes was the key path to obtain the gem-dihaloenones. Radical trapping experiments with TEMPO, BHT, and Stern-Volmer quenching studies helped to understand that the reaction proceeded via the SET mechanism.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
5
|
Yan CY, Wu ZW, He XY, Ma YH, Peng XR, Wang L, Yang QQ. Visible-Light-Induced Tandem Radical Brominative Addition/Cyclization of Activated Alkynes with CBr 4 for the Synthesis of 3-Bromocoumarins. J Org Chem 2023; 88:647-652. [PMID: 36480338 DOI: 10.1021/acs.joc.2c01721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-induced tandem radical brominative addition/spiro-cyclization/1,2-ester migration of activated alkynes with CBr4 is developed. This protocol features good functional group tolerance, operational simplicity, and mild reaction conditions without the use of catalysts and external additives, providing easy access to valuable 3-bromocoumarins in generally high yields.
Collapse
Affiliation(s)
- Chen-Yang Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Zheng-Wei Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China
| | - Xiao-Rong Peng
- GongAn County People's Hospital, No. 119, Chanling Avenue, Douhudi Town, Gongan County, Jingzhou, Hubei 434300, P. R. China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, P. R. China.,Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| |
Collapse
|
6
|
Visible-Light-Induced Catalytic Selective Halogenation with Photocatalyst. Molecules 2021; 26:molecules26237380. [PMID: 34885962 PMCID: PMC8659127 DOI: 10.3390/molecules26237380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Halide moieties are essential structures of compounds in organic chemistry due to their popularity and wide applications in many fields such as natural compounds, agrochemicals, and pharmaceuticals. Thus, many methods have been developed to introduce halides into various organic molecules. Recently, visible-light-driven reactions have emerged as useful methods of organic synthesis. Particularly, halogenation strategies using visible light have significantly improved the reaction efficiency and reduced toxicity, as well as promoted reactions under mild conditions. In this review, we have summarized recent studies in visible-light-mediated halogenation (chlorination, bromination, and iodination) with photocatalysts.
Collapse
|
7
|
Rao MLN, Islam SS. Copper-catalyzed synthesis of 1-(2-benzofuryl)-N-heteroarenes from o-hydroxy- gem-(dibromovinyl)benzenes and N-heteroarenes. Org Biomol Chem 2021; 19:9076-9080. [PMID: 34622915 DOI: 10.1039/d1ob01765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of 1-(2-benzofuryl)-N-heteroarenes is developed from o-hydroxy-gem-(dibromovinyl)benzenes and N-heteroarenes under copper-catalyzed tandem reaction conditions. This methodology displayed a broad substrate scope and high yields in the preparation of a variety of 1-(2-benzofuryl)-N-heteroarenes. Further, 1-(2-benzofuryl)-N-heteroarenes were also applied in the synthesis of polycyclic benzofuro-indolo-pyridine scaffolds under palladium-catalyzed dehydrogenative coupling conditions. Overall, the present tandem approach is general, synthetically advantageous and avoids air-sensitive reagents.
Collapse
Affiliation(s)
- Maddali L N Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Sk Shamim Islam
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| |
Collapse
|
8
|
Kumar Hota S, Jinan D, Prakash Panda S, Pan R, Sahoo B, Murarka S. Organophotoredox‐Catalyzed Late‐Stage Functionalization of Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100234] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| | - Dilsha Jinan
- School of Chemistry Indian Institute of Science Education and Research (IISER) Thiruvananthapuram 695551 Thiruvananthapuram Kerala India
| | - Satya Prakash Panda
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| | - Rittwika Pan
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| | - Basudev Sahoo
- School of Chemistry Indian Institute of Science Education and Research (IISER) Thiruvananthapuram 695551 Thiruvananthapuram Kerala India
| | - Sandip Murarka
- Department of Chemistry Indian Institute of Technology (IIT) Jodhpur 342037 Karwar Rajasthan India
| |
Collapse
|
9
|
Zhang H, Xu M, Liu N, Yang F. Copper‐Catalyzed Remote C5‐Selective Chlorination of 8‐Amidoquinolines Using Sulfonyl Chlorides as Cl Source. ChemistrySelect 2021. [DOI: 10.1002/slct.202100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Han Zhang
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Miao Xu
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Ningning Liu
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| | - Fanzhi Yang
- Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology. 5 South Zhongguancun Street, Haidian District Beijing 100081 China
| |
Collapse
|
10
|
Talukdar R. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Org Biomol Chem 2020; 18:8294-8345. [PMID: 33020775 DOI: 10.1039/d0ob01652g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of organic and inorganic brominated compounds including molecular bromine have been extensively used as oxidants in many organic photo-redox transformations in recent years, an area of ever growing interest because of greener and milder approaches. The oxidation power of these compounds is utilized through both mechanistic pathways (by hydrogen atom transfer or HAT in the absence of a photocatalyst and a combination of single electron transfer or SET and/or HAT in the presence of a photocatalyst). Not only as terminal oxidants for regeneration of photocatalysts, but brominated reactants have also contributed to the oxidation of the reaction intermediate(s) to carry on the radical chain process in several reactions. Here in this review mainly the non-brominative oxidative product formations are discussed, carried out since the last two decades, skipping the instances where they acted as terminal oxidants only to regenerate photocatalysts. The reactions are used to generate natural products, pharmaceuticals and beyond.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India.
| |
Collapse
|
11
|
Hou J, Wang K, Zhang C, Wei T, Bai R, Xie Y. Metal‐Free Electrochemical Oxidative Dihalogenation of Quinolines on the C5 and C7 Positions Using
N
‐Halosuccinimides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiahao Hou
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Kai Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou P.R. China
| | - Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou P.R. China
| | - Tingting Wei
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Renren Bai
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou P.R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou P.R. China
| |
Collapse
|