1
|
Adam Elzubier Adam H, Zhou S, Zeng Q. Advances in cross-coupling and oxidative coupling reactions of NH-sulfoximines - a review. Chem Commun (Camb) 2025. [PMID: 39757832 DOI: 10.1039/d4cc05308g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Due to the special structure and physicochemical properties of sulfoximines, research on sulfoximines has achieved great progress in recent decades, especially in chemical and medicinal fields. This review highlights recent advancements in the N-functionalization of NH-sulfoximines, focusing on classical cross-coupling reactions with electrophilic agents and oxidative coupling reactions with extensive organic compounds, including specific (hetero)arenes, alkenes (1,4-naphthoquinones), alkanes (cyclohexanes), nucleophiles (thiols, disulfides, sulfinates, diarylphosphine oxides), organyl boronic acids, and arylhydrazines. Transition metal-catalyzed, metal-free, electrochemical and radical oxidative coupling reactions are discussed. This review also reports and discusses the mechanistic pathways of some typical reactions.
Collapse
Affiliation(s)
- Hala Adam Elzubier Adam
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Sihan Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
2
|
Zhang W, Jin D, Hu Y, Yin K, Zou Q, Tang L, Qian P. Electrochemically Enable N-Sulfenylation/Phosphinylation of Sulfoximines via Oxidative Dehydrocoupling Reaction. J Org Chem 2024; 89:6106-6116. [PMID: 38632856 DOI: 10.1021/acs.joc.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An electrochemical oxidative cross-coupling strategy for the synthesis of N-sulfenylsulfoximines from sulfoximines and thiols was accomplished, giving diverse N-sulfenylsulfoximines in moderate to good yields. Moreover, this strategy can be extended to construct the N-P bond of N-phosphinylated sulfoximines. With electrons as reagents, the oxidative dehydrogenation cross-coupling reaction proceeds smoothly in the absence of traditional redox reagents.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Dongsheng Jin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yongkang Hu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Kun Yin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Quan Zou
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liang Tang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
3
|
Zhang Y, Yang Z, Yang H, Li X, Yang L. Generation of sulfones utilizing β-sulfinyl esters as masked aryl sulfinates under redox-neutral conditions. Org Biomol Chem 2024; 22:3381-3385. [PMID: 38606462 DOI: 10.1039/d4ob00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
A method for generation of SVI sulfones from β-sulfinyl esters (SIV) under transition-metal-free non-oxidative mild conditions is presented. Various sulfones have been achieved with moderate to excellent yields. The advantage of using β-sulfinyl esters as masked aryl sulfinates has also been exemplified using brominated substrates. Oxygen isotope-labeling experiments indicated that the oxygen atoms incorporated into the sulfone product come from the sulfoxide of the β-sulfinyl ester. Successive β-elimination/O-addition/sulfinate esterification/β-elimination processes are proposed for the mechanism of generating SVI from SIV.
Collapse
Affiliation(s)
- Yixin Zhang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Zhu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Hongjun Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| | - Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
4
|
Huang J, Li X, Wei Y, Lei Z, Xu L. Organoboron/iodide-catalyzed photoredox N-functionalization of NH-sulfoximines/sulfonimidamides. Chem Commun (Camb) 2023; 59:13643-13646. [PMID: 37905454 DOI: 10.1039/d3cc04351g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An aminoquinolate diarylboron (AQDAB) and tetrabutylammonium iodide (TBAI) co-catalyzed photoredox process for N-functionalization of NH-sulfoximines/sulfonimidamides has been successfully developed. This protocol can afford the corresponding N-sulfenylated and N-phosphonylated products in good to excellent yields under conditions without metallic (photo)catalysts, external oxidants, or acidic/basic additives. A wide range of functional groups are tolerated, and the N-phosphonylated products of NH-sulfonimidamides have been reported for the first time.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| | - Xiaoman Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| | - Zhigang Lei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 266, Beijing 100029, China.
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|
5
|
Tang Q, Zhao P, Zeng Q. Chromatographic Enantioseparation of Chiral Sulfoximines on Polysaccharide-Based Chiral Stationary Phases. J Chromatogr Sci 2023; 61:838-843. [PMID: 37394911 DOI: 10.1093/chromsci/bmad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/12/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Chiral sulfoximines have significant roles in pharmaceutical industry and agricultural chemicals. Furthermore, chiral structurally related sulfoximines are used for their wide potential applications in some uncharted territory. However, chromatographic study on these compounds has not been systematically performed. Herein, this paper describes the enantioseparation of 12 chiral sulfoximines on polysaccharide-based chiral stationary phases (CSPs). Separation factors of chiral column, high-performance liquid chromatography parameters such as mobile phase composition and column temperature were carefully investigated. Chiralcel OJ-H column can resolve all of the 12 compounds, while Chiralpak AD-H column and Chiralpak AS-H column can separate eight and nine molecules, respectively. The sulfoximines are effectively resolved with Chiralcel OJ-H column with a mixture of n-hexane/2-propanol (80:20) as the mobile phase.
Collapse
Affiliation(s)
- Qinqin Tang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, #1 East Third Road, Erxianqiao, Chenghua District, Chengdu 610059, China
| | - Ping Zhao
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, #1 East Third Road, Erxianqiao, Chenghua District, Chengdu 610059, China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, #1 East Third Road, Erxianqiao, Chenghua District, Chengdu 610059, China
| |
Collapse
|
6
|
Wang B, Liang X, Zeng Q. Recent Advances in the Synthesis of Cyclic Sulfoximines via C-H Bond Activation. Molecules 2023; 28:molecules28031367. [PMID: 36771034 PMCID: PMC9921269 DOI: 10.3390/molecules28031367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Sulfoximines, a ubiquitous class of structural motifs, are widely present in bioactive molecules and functional materials that have received considerable attention from modern organic chemistry, pharmaceutical industries, and materials science. Sulfoximines have proved to be an effective directing group for C-H functionalization which was widely investigated for the synthesis of cyclic sulfoximines. Within the last decade, great progress has been achieved in the synthesis of cyclic sulfoximines. Thus, this review highlights the recent advances in the synthesis of cyclic sulfoximines via the C-H activation strategy and is classified based on the substrate types.
Collapse
|
7
|
Natarajan K, Sharma S, Irfana Jesin CP, Kataria R, Nandi GC. One-pot synthesis of α-sulfoximinophosphonate via Kabachnik-Fields reaction. Org Biomol Chem 2022; 20:7036-7039. [PMID: 36040442 DOI: 10.1039/d2ob01355j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we disclose a novel approach for the synthesis of hitherto unknown α-sulfoximinophosphonate via the Kabachnik-Fields reaction of aldehyde, dialkylphosphite and sulfoximine in the presence of InCl3 in THF at 70 °C. α-Sulfoximinophosphonate is synthesized in good yields and its synthetic utilities are proved by functionalizing bromine through the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction and reduction of a nitro group through the Béchamp reduction.
Collapse
Affiliation(s)
- K Natarajan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - Suraj Sharma
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - C P Irfana Jesin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh-160014, India
| | - Ganesh Chandra Nandi
- Department of Chemistry, National Institute of Technology-Tiruchirappalli 620015, Tamil Nadu, India.
| |
Collapse
|
8
|
Zheng L, Cai L, Mei W, Liu G, Deng L, Zou X, Zhuo X, Zhong Y, Guo W. Copper-Catalyzed Phosphorylation of N, N-Disubstituted Hydrazines: Synthesis of Multisubstituted Phosphorylhydrazides as Potential Anticancer Agents. J Org Chem 2022; 87:6224-6236. [PMID: 35442041 DOI: 10.1021/acs.joc.2c00452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An efficient copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction for the synthesis of multisubstituted phosphorylhydrazides from N,N-disubstituted hydrazines and hydrogen phosphoryl compounds is accomplished. The reaction proceeds under mild conditions without the addition of any external oxidants and bases. This work reported here represents a direct P(═O)-N-N bond formation with the advantages of being operationally simple, good functional group tolerance, and high atom and step economy. Furthermore, the selected compounds exhibit potential inhibitory activity against tumor cells, which can be used in the field of screening of anticancer agents as new chemical entities.
Collapse
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ling Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
9
|
Affiliation(s)
| | - Shovan Mondal
- Department of Chemistry Syamsundar College Shyamsundar 713424 India
| |
Collapse
|
10
|
Zheng W, Chen X, Chen F, He Z, Zeng Q. Syntheses and Transformations of Sulfoximines. CHEM REC 2020; 21:396-416. [DOI: 10.1002/tcr.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Xianlie Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Feng Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Ze He
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology 1 Dongsan Road, Erxianqiao Chengdu 610059 China
| |
Collapse
|
11
|
Chen H, Jiang W, Zeng Q. Recent Advances in Synthesis of Chiral Thioethers. CHEM REC 2020; 20:1269-1296. [PMID: 32930488 DOI: 10.1002/tcr.202000084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Chiral thioethers is an important class of organosulfur molecules with extensive applications, especially in the field of medicine and organic synthesis. This review discusses the recent progress of synthesis of enantioenriched chiral thioethers and hopes to be helpful for related research in the future. It is summarized from organosulfur compounds-participating organic reaction types, including nucleophilic substitution, cross coupling, sulfa-Michael addition, sulfenylation, asymmetric allylic reaction, asymmetric Doyle-Kirmse reaction, Pummerer-type rearrangement, Smiles rearrangement,[2,3] Stevens and Sommelet-Hauser rearrangement.
Collapse
Affiliation(s)
- Hongyi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Wenlong Jiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road, Erxianqiao, Chengdu, 610059, China
| |
Collapse
|
12
|
Zheng W, Tan M, Yang L, Zhou L, Zeng Q. I2
-Catalyzed N-Sulfonylation of Sulfoximines with Sulfinates in Water at Room Temperature. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Mingchao Tan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Lu Yang
- Department of Chemistry; Graduate School of Science; Tohoku University; 980-8578 Sendai Japan
| | - Lihong Zhou
- College of Environment and Ecology; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection; College of Materials, Chemistry & Chemical Engineering; Chengdu University of Technology; 610059 Chengdu China
| |
Collapse
|