1
|
Lou C, Huang Q, Lv L, Li Z. Formal Transformation of Benzylic Carboxylic Acids to Phenols. Chemistry 2024:e202403301. [PMID: 39400927 DOI: 10.1002/chem.202403301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/15/2024]
Abstract
Phenols play a crucial role as core structural motifs in natural products and also serve as fundamental building blocks in synthetic chemistry. Apart from the known protocols for the conversion of aryl precursors to phenols (i. e., decarboxylative oxygenation), we report here the efficient synthesis of phenols from the stable and readily available benzylic carboxylic acids under mild reaction conditions. The photocatalytic conversion of carboxylic acids to peroxides is a crucial step in this strategy, allowing the subsequent C-O bond formation via Hock rearrangement.
Collapse
Affiliation(s)
- Chenhao Lou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, People's Republic of China
| |
Collapse
|
2
|
Kemp A, Durand M, Wall D, Szieber P, Hermanns MI, Oelgemöller M. Synthesis of 1H-isoindolin-1-ones via a simple photodecarboxylative addition of carboxylates to phthalimides and evaluation of their antibiotic activity. Photochem Photobiol Sci 2024; 23:1353-1360. [PMID: 38888704 DOI: 10.1007/s43630-024-00600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
A variety of 3-hydroxy-isoindolin-1-one derivatives were synthesized using the photodecarboxylative addition of carboxylates to phthalimide derivatives in aqueous media. Subsequent acid-catalyzed dehydration furnished 3-(alkyl and aryl)methyleneisoindolin-1-ones with variable E-diastereoselectivity in good to excellent overall yields. Noteworthy, the parent 3-phenylmethyleneisoindolin-1-one underwent isomerization and oxidative decomposition when exposed to light and air. Selected 3-hydroxy-isoindolin-1-one and 3-(alkyl and aryl)methyleneisoindolin-1-one derivatives showed moderate antibacterial activity that justifies future elaboration and study of these important bioactive scaffolds.
Collapse
Affiliation(s)
- Aiden Kemp
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Marine Durand
- Faculty of Chemistry & Biology, Hochschule Fresenius - University of Applied Sciences, Limburger Str. 2, 65510, Idstein, Germany
| | - Daniel Wall
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Peter Szieber
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - M Iris Hermanns
- Faculty of Chemistry & Biology, Hochschule Fresenius - University of Applied Sciences, Limburger Str. 2, 65510, Idstein, Germany
| | - Michael Oelgemöller
- Faculty of Chemistry & Biology, Hochschule Fresenius - University of Applied Sciences, Limburger Str. 2, 65510, Idstein, Germany.
| |
Collapse
|
3
|
Lui NM, Collum DB. Sodiated Oppolzer Enolates: Solution Structures, Mechanism of Alkylation, and Origin of Stereoselectivity. Org Chem Front 2023; 10:4750-4757. [PMID: 38144519 PMCID: PMC10746328 DOI: 10.1039/d3qo01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
NMR spectroscopic studies reveal camphorsultam-derived sodium enolates known as Oppolzer enolates reside as monomers in neat THF and THF/HMPA solutions and as dimers in toluene when solvated by N,N,N',N'-tetramethylethylenediamine (TMEDA) and N,N,N',N'',N''-pentamethyldiethylenediamine (PMDTA). Density functional theory (DFT) computations attest to the solvation numbers. Rate studies show analogy with previously studied lithiated Oppolzer enolates in which alkylation occurs through non-chelated solvent-separated ion pairs. The origins of the selectivity trace to transition structures in which the alkylating agent is guided to the exo face of the camphor owing to stereoelectronic preferences imparted by the sultam sulfonyl moiety. Marked secondary-shell solvation effects are gleaned from the rate studies.
Collapse
Affiliation(s)
- Nathan M Lui
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
4
|
Lui NM, MacMillan SN, Collum DB. Lithiated Oppolzer Enolates: Solution Structures, Mechanism of Alkylation, and Origin of Stereoselectivity. J Am Chem Soc 2022; 144:23379-23395. [PMID: 36534055 PMCID: PMC10071589 DOI: 10.1021/jacs.2c09341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Camphorsultam-based lithium enolates referred to colloquially as Oppolzer enolates are examined spectroscopically, crystallographically, kinetically, and computationally to ascertain the mechanism of alkylation and the origin of the stereoselectivity. Solvent- and substrate-dependent structures include tetramers for alkyl-substituted enolates in toluene, unsymmetric dimers for aryl-substituted enolates in toluene, substrate-independent symmetric dimers in THF and THF/toluene mixtures, HMPA-bridged trisolvated dimers at low HMPA concentrations, and disolvated monomers for the aryl-substituted enolates at elevated HMPA concentrations. Extensive analyses of the stereochemistry of aggregation are included. Rate studies for reaction with allyl bromide implicate an HMPA-solvated ion pair with a +Li(HMPA)4 counterion. Dependencies on toluene and THF are attributed to exclusively secondary-shell (medium) effects. Aided by density functional theory (DFT) computations, a stereochemical model is presented in which neither chelates nor the lithium gegenion serves roles. The stereoselectivity stems from the chirality within the sultam ring and not the camphor skeletal core.
Collapse
Affiliation(s)
- Nathan M Lui
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| |
Collapse
|
5
|
Liu G, Gao Y, Su W. Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. J Org Chem 2022; 88:6322-6332. [PMID: 36173738 DOI: 10.1021/acs.joc.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient protocol was proposed for the preparation of secondary alcohols in good to excellent yields via photoredox-catalyzed decarboxylative couplings between readily available arylacetic acids and a variety of less reactive (hetero)aromatic aldehydes. The formation of carbanion is the key intermediate in this reaction. Various substituted arylacetic acids and aldehydes were all compatible with this transformation under mild reaction conditions. Furthermore, the current protocol was successfully applied to the direct alcoholization of several drug acids.
Collapse
Affiliation(s)
- Ge Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.,State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
6
|
Zhang X, Liu G, Peng Y, li H, Zhou Y. Trifluoromethylated Indolopyranones through Regioselective Annulation of Indole Carboxylic Acids with Unsymmetric Internal Trifluoromethylated Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingxing Zhang
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Guangyuan Liu
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yiyuan Peng
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Hua li
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yirong Zhou
- Huazhong University of Science and Technology school of pharmacy No. 13 Hangkong Road 430030 wuhan CHINA
| |
Collapse
|
7
|
Patel P. Water-Mediated ortho-Carboxymethylation of Aryl Ketones under Ir(III)-Catalytic Conditions: Step Economy Total Synthesis of Cytosporones A-C. J Org Chem 2022; 87:4852-4862. [PMID: 35297630 DOI: 10.1021/acs.joc.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expeditious Ir(III)-catalyzed carboxymethylation of aryl ketone with diazotized Meldrum's acid has been developed in aqueous medium. Flavanone and chromanone were also found to be facile substrates with the developed catalytic system. Mechanistic studies revealed the active catalytic species and the role of water in the reaction process as hydroxy and proton sources. Employing the developed method, total synthesis of cytosporone A was achieved in two steps and that of cytosporones B-C was achieved in three steps starting from resorcinol.
Collapse
Affiliation(s)
- Pitambar Patel
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| |
Collapse
|
8
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Cheng F, Chen T, Huang YQ, Li JW, Zhou C, Xiao X, Chen FE. Copper-Catalyzed Ullmann-Type Coupling and Decarboxylation Cascade of Arylhalides with Malonates to Access α-Aryl Esters. Org Lett 2021; 24:115-120. [PMID: 34932360 DOI: 10.1021/acs.orglett.1c03688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a high-efficiency and practical Cu-catalyzed cross-coupling to directly construct versatile α-aryl-esters by utilizing readily available aryl bromides (or chlorides) and malonates. These gram-scale approaches occur with turnovers of up to 1560 and are smoothly conducted by the usage of a low catalyst loading, a new available ligand, and a green solvent. A variety of functional groups are tolerated, and the application occurs with α-aryl-esters to access nonsteroidal anti-inflammatory drugs (NSAIDs) on the gram scale.
Collapse
Affiliation(s)
- Fei Cheng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Tao Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Wei Li
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chen Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P. R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
10
|
Srinivas D, Satyanarayana G. Palladium-Catalyzed Distal m-C-H Functionalization of Arylacetic Acid Derivatives. Org Lett 2021; 23:7353-7358. [PMID: 34519504 DOI: 10.1021/acs.orglett.1c02460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we present m-C-H olefination on derivatives of phenylacetic acids by tethering with a simple nitrile-based template through palladium catalysis. Notably, the versatility of the method is evaluated with a wide range of phenylacetic acid derivatives for obtaining the meta-olefination products in fair to excellent yields with outstanding selectivities under mild conditions. Significantly, the present strategy is successfully exemplified for the synthesis of drugs/natural product analogues (naproxen, ibuprofen, paracetamol, and cholesterol).
Collapse
Affiliation(s)
- Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
11
|
Bao R, Feng Y, Deng D, Huang D, Sun X. Sulfinic Acids in Organic Synthesis: A Review of Recent Studies. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruwei Bao
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Yanping Feng
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Danfeng Deng
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Dayun Huang
- Department of Chemistry Lishui University No. 1, Xueyuan Road Lishui City 323000 Zhejiang Province P. R. China
| | - Xiangyu Sun
- Torch High Technology Industry Development Center Ministry of Science & technology
| |
Collapse
|
12
|
Nazeri MT, Beygzade Nowee A, Shaabani A. A new one-pot synthesis of pseudopeptide connected to sulfonamide via the tandem N-sulfonylation/Ugi reactions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05878e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, an efficient one-pot reaction is reported for the synthesis of a new class of pseudopeptide connected to sulfonamide via a tandem N-sulfonylation/Ugi four-component reaction (Ugi-4CR) strategy under mild conditions in high yields.
Collapse
Affiliation(s)
| | | | - Ahmad Shaabani
- Faculty of Chemistry
- Shahid Beheshti University
- G.C
- Tehran
- Iran
| |
Collapse
|
13
|
Continuous Flow Photochemical and Thermal Multi-Step Synthesis of Bioactive 3-Arylmethylene-2,3-Dihydro-1 H-Isoindolin-1-Ones. Molecules 2019; 24:molecules24244527. [PMID: 31835663 PMCID: PMC6943768 DOI: 10.3390/molecules24244527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022] Open
Abstract
An effective multi-step continuous flow approach towards N-diaminoalkylated 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones, including the local anesthetic compound AL-12, has been realized. Compared to the traditional decoupled batch processes, the combined photochemical–thermal–thermal flow setup rapidly provides the desired target compounds in superior yields and significantly shorter reaction times.
Collapse
|