1
|
Rakshit A, Moon K, Singh P, Park JS, Kim IS. Synthesis of Quinoline-Indole Hybrids through Cu(II)-Catalyzed Amination and Annulation between N-Oxides and o-Alkynylanilines. Org Lett 2024. [PMID: 39680728 DOI: 10.1021/acs.orglett.4c04375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The synthesis of (iso)quinoline-indole hybrids by reacting (iso)quinoline N-oxides with o-alkynylanilines in the presence of a combination of copper(II) catalyst and a bidentate 2,2'-bipyridine ligand is described. The utility of this method was demonstrated through site-selective functionalization of the synthesized products. A plausible reaction pathway for site-selective amination followed by annulative indole formation was elucidated by a series of mechanistic investigations.
Collapse
Affiliation(s)
- Amitava Rakshit
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Su Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Zhou H, Miyasaka M, Wang YH, Kochi T, Kakiuchi F. Palladium-Catalyzed Electrochemical Iodination of 1-Arylpyridine N-Oxides. J Org Chem 2024; 89:16300-16306. [PMID: 38412366 DOI: 10.1021/acs.joc.3c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The palladium-catalyzed C-H iodination of 1-arylpyridine N-oxides proceeded under electrochemical oxidation conditions using I2 as an iodine source. The reaction of isoquinoline N-oxides possessing various para- or meta-substituted aryl groups at the 1-position proceeded to give the corresponding iodination products. Electron-donating groups on the aryl group facilitated the reaction to give relatively high yields of the product. The reaction was also found to be applicable to 2-aryl-3-picoline N-oxides.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masahiro Miyasaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yu-Han Wang
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
3
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
4
|
Doraghi F, Aghanour Ashtiani MM, Ameli M, Larijani B, Mahdavi M. Transition Metal-Catalyzed C-H Activation/Functionalization of 8-Methylquinolines. CHEM REC 2024; 24:e202400116. [PMID: 39422078 DOI: 10.1002/tcr.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Indexed: 10/19/2024]
Abstract
8-Methylquinoline is regarded as an ideal substrate to participate in diversely C(sp3)-H functionalization reactions. The presence of the chelating nitrogen atom enables 8-methylquinoline to easily form cyclometallated complexes with various transition metals, leading to the selective synthesis of functionalized quinolines. Considering the great importance of quinoline cores in medicinal chemistry, in this review article, we have covered the publications related to the C-H activation and functionalization of 8-methylquinoline under transition metal catalysis during the last decade.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Aghanour Ashtiani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ameli
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ying L, Chen Y, Song X, Song Z. Metal-Free Thiocarbamation of Quinolinones: Direct Access to 3,4-Difunctionalized Quinolines and Quinolinonyl Thiocarbamates at Room Temperature. J Org Chem 2023; 88:13894-13907. [PMID: 37703192 DOI: 10.1021/acs.joc.3c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
A novel and practical method for the preparation of difunctionalized quinolines, bearing a thiocarbamate group at the C3-position and an acyloxyl group at the C4-position, and quinolinonyl thiocarbamates from quinolinones, tetraalkylthiuram disulfides, and hypervalent iodine(III) reagents has been developed via thiocarbamation of quinolinones at room temperature. The present method features mild reaction conditions, good tolerance with diverse functional groups, and a wide substrate scope, providing the desired products in good yields. Furthermore, this transformation is easy to scale up, and the desired products can be readily converted to heterocyclic thiols. Most importantly, this protocol allows for the late-stage thiocarbamation of bioactive compounds. Mechanistic studies show that radicals may be involved in this transformation, water is probably the oxygen source of thiocarbamates, and difunctionalized quinolines are possibly formed via nucleophilic attack of carboxylic anions, which derive from hypervalent iodine(III) reagents.
Collapse
Affiliation(s)
- Linkun Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiangrui Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
6
|
Gupta SS, Gupta S, Manisha, Gupta P, Sharma U. Experimental and Computational Studies on Ru II -Catalyzed C7-Allylation of Indolines with Allyl Bromide. Chemistry 2023; 29:e202301360. [PMID: 37358247 DOI: 10.1002/chem.202301360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The selective C7-allylation of indolines with allyl bromide under ruthenium catalysis has been revealed here. Under established reaction conditions, C7-allylation of various indolines, including drug compounds, was accomplished with good selectivity and yields. Based on combined experimental and density functional theory (DFT) studies, the olefin insertion route was energetically favorable among four possible pathways. Experimental and DFT studies further revealed that the C-H activation is a reversible rate-limiting step.
Collapse
Affiliation(s)
- Shiv Shankar Gupta
- C-H Activation & Phytochemistry Lab Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Manisha
- C-H Activation & Phytochemistry Lab Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Parmar D, Sharma T, Sharma AK, Sharma U. Construction of unsymmetrical heterobiaryls via the Cp*Rh(III)-catalysed C-H/C-H coupling of heteroarenes. Chem Commun (Camb) 2023. [PMID: 37465886 DOI: 10.1039/d3cc03166g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, a concise method for the Rh(III)-catalyzed, directing-group-assisted C-H/C-H cross-coupling of N-heterocycles (quinolines, indolines, indoles, pyridines, pyrimidines, pyrazoles) with other heteroarenes (benzoxazoles, benzofurans, and thiophenes) is disclosed for the synthesis of unsymmetrical heterobiaryl compounds in good to excellent yields. A plausible catalytic cycle has been delineated based on experimental and computational mechanistic studies.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona 43007, Spain.
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Sonawane HR, Vibhute BT, Aghav BD, Deore JV, Patil SK. Versatile applications of transition metal incorporating quinoline Schiff base metal complexes: An overview. Eur J Med Chem 2023; 258:115549. [PMID: 37321110 DOI: 10.1016/j.ejmech.2023.115549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Since the last decade, research on quinoline Schiff base metal complexes has risen substantially due to their versatile applications across many significant fields. Schiff bases are also known as azomethines, aldimines, and imines. Quinoline Schiff base-derived metal complexes are intriguing to study topics. These complexes are employed in biological, analytical, and catalytic fields. Researchers have found that Schiff bases are more biologically active when coordinated with metal ions. Research in the biological sciences has shown that heterocyclic compounds like quinoline and its derivatives are important. Because of their broad spectrum of activity, quinoline derivatives have been discovered to be effective therapeutic agents for various disorders. Even though various classical synthetic pathways mentioned in the literature are still in use, there is an urgent need for a new, more effective method that is safer for the environment, has a higher yield, generates less hazardous waste, and is easier to use. This highlights the critical need for a safe, eco-friendly approach to quinoline scaffold synthesis. This review focuses exclusively on Schiff base metal complexes derived from quinoline, fabricated and studied in the past ten years, and having anticancer, antibacterial, antifungal, antioxidant, antidiabetic, antiproliferative, DNA-intercalation, and cytotoxic activities.
Collapse
Affiliation(s)
- Harshad R Sonawane
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India; Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India.
| | - Baliram T Vibhute
- Department of Chemistry Doshi Vakil Arts and G.C.U.B. Science and Commerce College, Goregaon, Raigad, 402103, Maharashtra, India
| | - Balasaheb D Aghav
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India
| | - Jaydeep V Deore
- Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India
| | - Sanjay K Patil
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India.
| |
Collapse
|
9
|
Yang J, Liu B, Chang J. Ru(II)-Catalyzed One-Pot Synthesis of 1,2-Hydropyridines via a Three-Component Reaction. Org Lett 2023; 25:1476-1480. [PMID: 36856311 DOI: 10.1021/acs.orglett.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A ruthenium(II)-catalyzed one-pot synthesis of highly substituted 1,2-dihydropyridines (DHPs) via a three-component reaction system has been realized. The reaction is conducted using a simple Ru(II) catalyst without the addition of specific ligands. The catalytic system exhibits good functionality tolerance with a wide range of starting materials. The DHPs obtained can be easily converted into tetrahydropyridines and azabicyclo[4.2.0]octa-4,7-dienes by subsequent reduction or [2 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Juntao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Ko N, Min J, Moon J, Ismail NF, Moon K, Singh P, Mishra NK, Lee W, Kim IS. Rhodium(III)-Catalyzed Conjugate Addition of β-CF 3-Enones with Quinoline N-Oxides. J Org Chem 2023; 88:602-612. [PMID: 36524705 DOI: 10.1021/acs.joc.2c02659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The site-selective incorporation of a trifluoromethyl group into biologically active molecules and pharmaceuticals has emerged as a central topic in medicinal chemistry and drug discovery. Herein, we demonstrate the rhodium(III)-catalyzed conjugate addition of β-trifluoromethylated enones with quinoline N-oxides, which result in the generation of β-trifluoromethyl-β'-quinolinated ketones. The reaction proceeds under mild conditions with complete functional group tolerance. The synthetic applicability was showcased by successful gram-scale experiments and valuable synthetic transformations of coupling products.
Collapse
Affiliation(s)
- Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeonghyun Min
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nuraimi Farwizah Ismail
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,PAPRSB, Institute of Health Science, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Maurya NK, Yadav S, Chaudhary D, Kumar D, Ishu K, Kuram MR. Palladium-Catalyzed C(sp 3)-H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functionalized Biaryls and Fluorene Derivatives. J Org Chem 2022; 87:13744-13749. [PMID: 36198197 DOI: 10.1021/acs.joc.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we have developed the cyclic diaryliodonium salts as biarylating agents in the C(sp3)-H functionalization using 8-methyl quinoline as the intrinsic directing group. The oxidant-free reaction produces a vast array of the biarylated products with iodo functionality that can be further functionalized. Additionally, intramolecular C(sp3)-H functionalization in a stepwise manner under palladium-catalyzed conditions produced the fluorene derivatives in excellent yields.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Km Ishu
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
de las Heras L, Esteruelas MA, Oliván M, Oñate E. Rhodium-Promoted C-H Bond Activation of Quinoline, Methylquinolines, and Related Mono-Substituted Quinolines. Organometallics 2022; 41:2317-2326. [PMID: 36866062 PMCID: PMC9969481 DOI: 10.1021/acs.organomet.2c00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/28/2022]
Abstract
The C-H bond activation of methylquinolines, quinoline, 3-methoxyquinoline, and 3-(trifluoromethyl)quinoline promoted by the square-planar rhodium(I) complex RhH{κ3-P,O,P-[xant(PiPr2)2]} [1; xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene] has been systematically studied. Results reveal that the activation of the heteroring is preferred over the activation of the carbocycle, and the activated position depends upon the position of the substituent in the substrate. Thus, 3-, 4-, and 5-methylquinoline reacts with 1 to quantitatively form square-planar rhodium(I)-(2-quinolinyl) derivatives, whereas 2-, 6-, and 7-methylquinoline quantitatively leads to rhodium(I)-(4-quinolinyl) species. By contrast, quinoline and 8-methylquinoline afford mixtures of the respective rhodium(I)-(2-quinolinyl) and -(4-quinolinyl) complexes. 3-Methoxyquinoline displays the same behavior as that of 3-methylquinoline, while 3-(trifluoromethyl)quinoline yields a mixture of rhodium(I)-(2-quinolinyl), -(4-quinolinyl), -(6-quinolinyl), and -(7-quinolinyl) isomers.
Collapse
|
13
|
Borah B, Patat M, Swain S, Chowhan LR. Recent Advances and Prospects in the Transition‐Metal‐Free Synthesis of 1,4‐Dihydropyridines. ChemistrySelect 2022. [DOI: 10.1002/slct.202202484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - Mihir Patat
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - Sidhartha Swain
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| |
Collapse
|
14
|
De S, Aamna B, Sahu R, Parida S, Behera SK, Dan AK. Seeking heterocyclic scaffolds as antivirals against dengue virus. Eur J Med Chem 2022; 240:114576. [PMID: 35816877 PMCID: PMC9250831 DOI: 10.1016/j.ejmech.2022.114576] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/20/2022]
Abstract
Dengue is one of the most typical viral infection categorized in the Neglected Tropical Diseases (NTDs). It is transmitted via the female Aedes aegypti mosquito to humans and majorly puts risk to the lives of more than half of the world. Recent advancements in medicinal chemistry have led to the design and development of numerous potential heterocyclic scaffolds as antiviral drug candidates for the inhibition of the dengue virus (DENV). Thus, in this review, we have discussed the significance of inhibitory and antiviral activities of nitrogen, oxygen, and mixed (nitrogen-sulfur and nitrogen-oxygen) heterocyclic scaffolds that are published in the last seven years (2016–2022). Furthermore, we have also discussed the probable mechanisms of action and the diverse structure-activity relationships (SARs) of the heterocyclic scaffolds. In addition, this review has elaborately outlined the mechanism of viral infection and the life cycle of DENV in the host cells. The wide set of heterocycles and their SARs will aid in the development of pharmaceuticals that will allow the researchers to synthesize the promising anti-dengue drug candidate in the future.
Collapse
|
15
|
Liu M, Mao Z, Jiang Y, Zhang Z, Zhang X. Pd-catalyzed Site-selective direct arene C H arylation of Pyrrolo[2,3-d]pyrimidine derivatives with aryl iodides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Structure, UV spectroscopic and electrochemical properties of 2-methyl-8-quinolinolato rhodium (I) complexes, containing carbonyl, triphenylphosphine or triphenylphosphite ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Wang D, Zhang L, Xiao F, Mao GJ, Deng GJ. Electrochemical Selective C3-Thiolation of Quinolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00148a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical method has been developed to achieve C3-thiolation of quinoline compounds. This new strategy highlights the maximum atom economy, direct conversion and also the use of simple and readily...
Collapse
|
18
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
20
|
Gupta SS, Manisha, Kumar R, Dhiman AK, Sharma U. Predictable site-selective functionalization: Promoter group assisted para-halogenation of N-substituted (hetero )aromatics under metal-free condition. Org Biomol Chem 2021; 19:9675-9687. [PMID: 34730171 DOI: 10.1039/d1ob02000e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, regioselective para-C-H halogenation of N-pyrimidyl (hetero)aromatics through SEAr (electrophilic aromatic substitution) type reaction is disclosed. SEAr type reaction has been utilized for the C5-bromination of indolines (para-selective) with N-bromosuccinimide under metal and additive-free conditions in good to excellent yields. The developed methodology is also applicable for iodination and challenging chlorination. The pyrimidyl group is identified as a reactivity tuner that also controls the regioselectivity. The present method is also applicable for selective halogenation of aniline, pyridine, indole, oxindole, pyrazole, tetrahydroquinoline, isoquinoline, and carbazole. DFT studies such as Fukui nucleophilicity and natural charge maps also support the observed p-selectivity. Post-functionalization of the title compound into the corresponding arylated, olefinated, and dihalogenated products is achieved in a one-pot, two-step fashion. Late-stage C-H bromination was also executed on drug/natural molecules (harmine, etoricoxib, clonidine, and chlorzoxazone) to demonstrate the applicability of the developed protocol.
Collapse
Affiliation(s)
- Shiv Shankar Gupta
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Manisha
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Wydział Chemii, Uniwersytet Wrocławski, 50-383 Wrocław, Poland
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
21
|
Wang W, Fu X, Cai Y, Cheng L, Yao C, Wang X, Li TJ. Pd(II)-Catalyzed Arylation/Oxidation of Benzylic C-H of 8-Methylquinolines: Access to 8-Benzoylquinolines. J Org Chem 2021; 86:15423-15432. [PMID: 34581570 DOI: 10.1021/acs.joc.1c01958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient access to 8-benzoylquinoline was developed by a sequential arylation/oxidation of 8-methylquinolines with aryl iodides in the presence of Pd(OAc)2. This transformation demonstrates good tolerance of a wide range of functional groups on aryl iodides, providing good to excellent yields of 8-benzoylquinolines.
Collapse
Affiliation(s)
- Wenrong Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiaoqing Fu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Yuchen Cai
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Li Cheng
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Changsheng Yao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Xiangshan Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Tuan-Jie Li
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
22
|
Prabagar B, Yang Y, Shi Z. Site-selective C-H functionalization to access the arene backbone of indoles and quinolines. Chem Soc Rev 2021; 50:11249-11269. [PMID: 34486584 DOI: 10.1039/d0cs00334d] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The site-selective C-H bond functionalization of heteroarenes can eventually provide chemists with great techniques for editing and building complex molecular scaffolds. During the past decade, benzo-fused N-heterocycles such as indoles and quinolines have been among the most widely investigated organic templates. Early developments have led to site-selective C-H bond functionalization on the pyrrole and pyridine cores of indoles and quinolines; however, C-H functionalization on the benzenoid ring has remained a great challenge in catalysis. In this review, we elaborate on recent developments in the highly challenging functionalization of C-H bonds on the less-reactive benzenoid core of indoles and quinolines. These findings are mainly described as selective directing group assisted strategies, remote C-H functionalization techniques and their reaction mechanisms. The underlying principle in each strategy is elucidated, which aims to facilitate the design of a more advanced structure of heterocycles based on bioactive molecules, synthetic drugs, and material aspects. Moreover, the challenges and perspectives for catalytic C-H functionalization to access the arene backbone of indoles and quinolines are also proposed in the conclusion section.
Collapse
Affiliation(s)
- B Prabagar
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Youqing Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
23
|
Corio A, Gravier-Pelletier C, Busca P. Regioselective Functionalization of Quinolines through C-H Activation: A Comprehensive Review. Molecules 2021; 26:5467. [PMID: 34576936 PMCID: PMC8466797 DOI: 10.3390/molecules26185467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Quinoline is a versatile heterocycle that is part of numerous natural products and countless drugs. During the last decades, this scaffold also became widely used as ligand in organometallic catalysis. Therefore, access to functionalized quinolines is of great importance and continuous efforts have been made to develop efficient and regioselective synthetic methods. In this regard, C-H functionalization through transition metal catalysis, which is nowadays the Graal of organic green chemistry, represents the most attractive strategy. We aim herein at providing a comprehensive review of methods that allow site-selective metal-catalyzed C-H functionalization of quinolines, or their quinoline N-oxides counterparts, with a specific focus on their scope and limitations, as well as mechanistic aspects if that accounts for the selectivity.
Collapse
Affiliation(s)
| | | | - Patricia Busca
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (A.C.); (C.G.-P.)
| |
Collapse
|
24
|
Nale SD, Aslam M, Lee YR. Installation of Diverse Succinimides at C‐8 Position of Quinoline
N
‐Oxides via Rhodium(III)‐Catalyzed C−H Functionalization. ChemistrySelect 2021. [DOI: 10.1002/slct.202102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sagar D. Nale
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Mohammad Aslam
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
25
|
An W, Lee SH, Kim D, Oh H, Kim S, Byun Y, Kim HJ, Mishra NK, Kim IS. Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis. J Org Chem 2021; 86:7579-7587. [PMID: 33949193 DOI: 10.1021/acs.joc.1c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The site-selective modification of quinolines and their analogs has emerged as a pivotal topic in medicinal chemistry and drug discovery. Herein, we describe the rhodium(III)-catalyzed C8-alkylation of quinoline N-oxides with maleimides as alkylating agents, resulting in the formation of bioactive succinimide-containing quinoline derivatives. The reaction proceeds under mild conditions with complete functional group tolerance.
Collapse
Affiliation(s)
- Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dayoung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | - Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jin Kim
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Thakur A, Dhiman AK, Sumit, Kumar R, Sharma U. Rh(III)-Catalyzed Regioselective C8-Alkylation of Quinoline N-Oxides with Maleimides and Acrylates. J Org Chem 2021; 86:6612-6621. [PMID: 33881315 DOI: 10.1021/acs.joc.1c00393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we disclose the Rh(III)-catalyzed selective C8-alkylation of quinoline N-oxides with maleimides and acrylates. The main features of the reaction include complete C8-selectivity and broad substrate scope with good to excellent yields. The reaction also proceeded well with unprotected maleimide. The applicability of the developed methodology is demonstrated with gram-scale synthesis and post-modification of the alkylated product. Preliminary mechanistic study revealed that the reaction proceeds through a five-membered rhodacycle and involves proto-demetalation step.
Collapse
Affiliation(s)
- Ankita Thakur
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Bera S, Biswas A, Samanta R. Straightforward Construction and Functionalizations of Nitrogen-Containing Heterocycles Through Migratory Insertion of Metal-Carbenes/Nitrenes. CHEM REC 2021; 21:3411-3428. [PMID: 33913245 DOI: 10.1002/tcr.202100061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Nitrogen-containing heterocycles are widely found in various biologically active substrates, pharmaceuticals, natural products and organic materials. Consequently, the continuous effort has been devoted towards the development of straightforward, economical, environmentally acceptable, efficient and ingenious methods for the synthesis of various N-containing heterocycles and their functionalizations. Arguably, one of the most prominent direct strategy is regioselective C-H bond functionalizations which provide the step and atom economical approaches in the presence of suitable coupling partners. In this context, site-selective migratory insertion of metal carbenes/nitrenes to the desired C-H bonds has proven as a useful tool to access various functionalized nitrogen heterocycles. In this personal account, we highlight some of our contemporary development toward constructing N-containing heterocycles and their direct functionalizations via transition metal catalysed C-H bond functionalizations based on migratory insertion of metal-carbenes and nitrenes.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
28
|
Xu C, Yin G, Jia FC, Wu YD, Wu AX. Merging Annulation with Ring Deconstruction: Synthesis of ( E)-3-(2-Acyl-1 H-benzo[ d]imidazol-4-yl)acrylaldehyde Derivatives via I 2/FeCl 3-Promoted Dual C(sp 3)-H Amination/C-N Bond Cleavage. Org Lett 2021; 23:2559-2564. [PMID: 33739840 DOI: 10.1021/acs.orglett.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented I2/FeCl3-promoted cascade reaction of aryl methyl ketones with 8-aminoquinolines for the convenient synthesis of (E)-3-(2-acyl-1H-benzo[d]imidazol-4-yl)acrylaldehydes was developed by merging annulation with ring deconstruction. This novel strategy unlocked the new reactivity of 8-aminoquinolines and provided an attractive platform for the ring opening of unactivated N-heteroaromatic compounds. Preliminary mechanistic investigation suggested that dual C(sp3)-H amination/C-N bond cleavage were key reaction steps. Furthermore, late-stage modification of the obtained products successfully delivered pyrazole and isoxazole derivatives, increasing the practicability and application potential of this methodology in organic synthesis.
Collapse
Affiliation(s)
- Cheng Xu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China.,Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guodong Yin
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China
| | - Feng-Cheng Jia
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
29
|
Huestis MP, Leclerc J, Larouche‐Gauthier R, Aubert‐Nicol S, Yadav A, Sivamuthuraman K. Cp*Rh(III)‐Catalyzed C8 C−H Alkylation of Quinoline
N
‐Oxides with Diazo Meldrum's Acid. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malcolm P. Huestis
- Discovery Chemistry Genentech, Inc. 1 DNA Way 94080 South San Francisco California USA
| | - Jean‐Philippe Leclerc
- Chemical Sciences Paraza Pharma, Inc. 2525 Avenue Marie-Curie H4S 2E1 Montréal Quebec Canada
| | - Robin Larouche‐Gauthier
- Chemical Sciences Paraza Pharma, Inc. 2525 Avenue Marie-Curie H4S 2E1 Montréal Quebec Canada
| | - Samuel Aubert‐Nicol
- Chemical Sciences Paraza Pharma, Inc. 2525 Avenue Marie-Curie H4S 2E1 Montréal Quebec Canada
| | - Arun Yadav
- Chemical Sciences Paraza Pharma, Inc. 2525 Avenue Marie-Curie H4S 2E1 Montréal Quebec Canada
| | | |
Collapse
|
30
|
Kim SH, An JH, Lee JH. Highly chemoselective deoxygenation of N-heterocyclic N-oxides under transition metal-free conditions. Org Biomol Chem 2021; 19:3735-3742. [PMID: 33908554 DOI: 10.1039/d1ob00260k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because their site-selective C-H functionalizations are now considered one of the most useful tools for synthesizing various N-heterocyclic compounds, the highly chemoselective deoxygenation of densely functionalized N-heterocyclic N-oxides has received much attention from the synthetic chemistry community. Here, we provide a protocol for the highly chemoselective deoxygenation of various functionalized N-oxides under visible light-mediated photoredox conditions with Na2-eosin Y as an organophotocatalyst. Mechanistic studies imply that the excited state of the organophotocatalyst is reductively quenched by Hantzsch esters. This operationally simple technique tolerates a wide range of functional groups and allows high-yield, multigram-scale deoxygenation.
Collapse
Affiliation(s)
- Se Hyun Kim
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| | - Ju Hyeon An
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University Gyeongju Campus, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
31
|
Parmar D, Kumar R, Kumar R, Sharma U. Ru(II)-Catalyzed Chemoselective C(sp3)–H Monoarylation of 8-Methyl Quinolines with Arylboronic Acids. J Org Chem 2020; 85:11844-11855. [DOI: 10.1021/acs.joc.0c01603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Diksha Parmar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|