1
|
Zhang L, Wang LL, Fang DC. DFT Case Study on the Comparison of Ruthenium-Catalyzed C-H Allylation, C-H Alkenylation, and Hydroarylation. ACS OMEGA 2022; 7:6133-6141. [PMID: 35224376 PMCID: PMC8867598 DOI: 10.1021/acsomega.1c06584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Density functional calculations at the B3LYP-D3+IDSCRF/TZP-DKH(-dfg) level of theory have been performed to understand the mechanism of ruthenium-catalyzed C-H allylation reported in the literature in depth. The plausible pathway consisted of four sequential processes, including C-H activation, migratory insertion, amide extrusion, and recovery of the catalyst, in which C-H activation was identified as the rate-determining step. The amide extrusion step could be promoted kinetically by trifluoroacetic acid since its mediation lowered the free-energy barrier from 32.1 to 12.2 kcal/mol. Additional calculations have been performed to explore other common pathways between arenes and alkenes, such as C-H alkenylation and hydroarylation. A comparison of the amide extrusion and β-H elimination steps established the following reactivity sequence of the leaving groups: protonated amide group > β-H group > unprotonated amide group. The suppression of hydroarylation was attributed to the sluggishness of the Ru-C protonation step as compared to the amide extrusion step. This study can unveil factors favoring the C-H allylation reaction.
Collapse
Affiliation(s)
- Lei Zhang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Ling-Ling Wang
- School
of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - De-Cai Fang
- College
of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
2
|
Zhang L, Liu Y, Zhou Y. A Computational Study on Cycloaddition Reactions between Isatin Azomethine Imine and in situ Generated Azaoxyallyl Cation. ChemistrySelect 2022. [DOI: 10.1002/slct.202104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Ying Liu
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Yongzhu Zhou
- School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
3
|
Wang Q, Yan Z, Xing D. Nickel(0)-catalysed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids by a bifunctional temporary directing group strategy. Org Chem Front 2022. [DOI: 10.1039/d2qo00546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a nickel(0)-catalyzed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids using a bifunctional temporary directing group strategy. In the presence of a catalytic amount of commercially available 3,5-dibromosalicylaldehyde, an...
Collapse
|
4
|
Wang R, Liu Y, Wang Q, Zhang L, Li Z, Pu M, Lei M. The Role of AQ in the Regioselectivity of Strong Alkyl C-O Bond Activation Catalyzed by Pd(OAc) 2: A Density Functional Theory Mechanistic Study. Inorg Chem 2021; 60:17555-17564. [PMID: 34752698 DOI: 10.1021/acs.inorgchem.1c02127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A density functional theory method was employed to investigate the mechanism of C-O bond activation of butanoic acid substrates bearing the 8-aminoquinoline (AQ) group catalyzed by Pd(OAc)2. The whole reaction consists of five fundamental steps: the chelation of substrate A1, the C-H activation step, the C-N coupling step, the protodepalladation step, and the release of the final product. The calculated results indicated that the protodepalladation step is the rate-determining step with a free energy barrier of 24.3 kcal/mol. This theoretical study pointed out that the energy barriers of C-H activation in the presence and absence of AQ are 11.3 and 26.6 kcal/mol, respectively. This is to say that the installation of the AQ directing group is critical to the regioselectivity of C-H activation and the β-O elimination steps, and this reason enables selective activation of the γ C-O bond. Furthermore, this chelating functionality facilitated the protodepalladation step because the energy barrier of the protodepalladation step was decreased with the coordination of the AQ directing group with a Pd center, and that was 39.3 kcal/mol in the absence of AQ. This also explains why no product formation was observed in the experiment upon changing the directing AQ group to a phenylamino group. Finally, other substrates bearing the phenol leaving group at the β- and δ-positions of carbonyl were investigated in order to expand the applicability of the AQ directing strategy. This work could provide new theoretical insights into the activation of strong alkyl C(sp3) covalent bonds via the AQ directing strategy.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangqiu Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianyue Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|