1
|
Marzullo P, Campisciano V, Liotta LF, D’Anna F, Giacalone F, Gruttadauria M. Trialkoxysilane Grafting in Alcohols: A Simple Approach towards Modified Silica-Based Materials. Molecules 2024; 29:4730. [PMID: 39407658 PMCID: PMC11477603 DOI: 10.3390/molecules29194730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
The grafting of trialkoxysilanes is the most common method for the surface functionalization of silica gel, and it is usually carried out in the presence of toluene or other solvents such as acetonitrile or acetone. Here, we replaced these solvents with alcohols to afford silica materials containing alkoxy groups linked to the silicon atom. The grafting of N,N-dimethyl-3-amino- or 3-amino-propyltrimethoxysilane was carried out in the presence of several alcohols containing an unsubstituted alkyl chain (C7 and C14), a PEG functionalized chain, or an amino-substituted chain (N,N-dimethylamino, pyridyl). Materials were characterized via solid-state 13C- and 29Si CPMAS NMR and thermogravimetric analysis to prove that alcohols are not "innocent" solvents but take part in the reaction and lead to [RSi(OR1)-(OSi)2] systems where the OR1 group proceeds from the alcohol used in the synthesis. As a proof of concept, we briefly studied the catalytic activity of some of these materials with the aim of showing how different modifications can influence the course of a selected reaction. Finally, a quaternary ammonium salt (QAS)-based silica was prepared containing both an alkyl-QAS and an alkoxy-QAS linked to silicon atoms. This could represent an interesting approach for the development of new antifouling-based materials and, overall, the described strategy could be useful for the preparation of new organosilica materials.
Collapse
Affiliation(s)
- Paola Marzullo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (P.M.); (V.C.); (F.D.); (F.G.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (P.M.); (V.C.); (F.D.); (F.G.)
| | - Leonarda Francesca Liotta
- Institute for the Study of Nanostructured Materials (ISMN), National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Francesca D’Anna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (P.M.); (V.C.); (F.D.); (F.G.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (P.M.); (V.C.); (F.D.); (F.G.)
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (P.M.); (V.C.); (F.D.); (F.G.)
- Sustainable Mobility Center (Centro Nazionale per la Mobilità Sostenibile—CNMS), Via Durando 39, 20158 Milano, Italy
| |
Collapse
|
2
|
Campisciano V, Giacalone F, Gruttadauria M. Is a Catalyst Always Needed? The Case of the Knoevenagel Reaction with Malononitrile. ChemCatChem 2022. [DOI: 10.1002/cctc.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) INSTM UdR – Palermo University of Palermo Viale delle Scienze, Building 17 90128 Palermo Italy
| | - Francesco Giacalone
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) INSTM UdR – Palermo University of Palermo Viale delle Scienze, Building 17 90128 Palermo Italy
| | - Michelangelo Gruttadauria
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) INSTM UdR – Palermo University of Palermo Viale delle Scienze, Building 17 90128 Palermo Italy
| |
Collapse
|
3
|
First Evidence of Tris(catecholato)silicate Formation from Hydrolysis of an Alkyl Bis(catecholato)silicate. Molecules 2022; 27:molecules27082521. [PMID: 35458719 PMCID: PMC9032887 DOI: 10.3390/molecules27082521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The hydrolysis of 3-ammoniumpropylbis(catecholato)silicate 1, giving two different silica-based materials containing different amounts of tris(catecholato)silicate, is reported. The latter species can be formed through an attack of catechol to the silicon atom in the pentacoordinate complex, in which the silicon-carbon bond is further activated toward electrophilic proton cleavage. The Knoevenagel reaction was used as a probe in order to test the availability of functional groups on the surface of such materials.
Collapse
|