1
|
Oparina LA, Kolyvanov NA, Ushakov IA, Nikitina LP, Petrova OV, Sobenina LN, Petrushenko KB, Trofimov BA. Contributing to Biochemistry and Optoelectronics: Pyrrolo[1',2':2,3]imidazo[1,5- a]indoles and Cyclohepta[4,5]pyrrolo[1,2- c]pyrrolo[1,2- a]imidazoles via [3+2] Annulation of Acylethynylcycloalka[ b]pyrroles with Δ 1-Pyrrolines. Int J Mol Sci 2023; 24:ijms24043404. [PMID: 36834813 PMCID: PMC9959468 DOI: 10.3390/ijms24043404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Available pyrrolylalkynones with tetrahydroindolyl, cycloalkanopyrrolyl, and dihydrobenzo[g]indolyl moieties, acylethynylcycloalka[b]pyrroles, are readily annulated with Δ1-pyrrolines (MeCN/THF, 70 °C, 8 h) to afford a series of novel pyrrolo[1',2':2,3]imidazo[1,5-a]indoles and cyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazoles functionalized with an acylethenyl group in up to an 81% yield. This original synthetic approach contributes to the arsenal of chemical methods promoting drug discovery. Photophysical studies show that some of the synthesized compounds, e.g., benzo[g]pyrroloimidazoindoles, are prospective candidates for TADF emitters of OLED.
Collapse
|
2
|
Liu H, Zhang K, Zou H, Mu Q, Song Y, Lin L, Xu Y, Wang CK, Fan J. Controllable construction of red thermally activated delayed fluorescence molecules based on a spiro-acridine donor. Phys Chem Chem Phys 2023; 25:1032-1044. [PMID: 36537471 DOI: 10.1039/d2cp05084f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red and near-infrared (NIR) thermally activated delayed fluorescence (TADF) molecules show excellent potential applications in organic light-emitting diodes (OLEDs). Due to the lack of systematic studies on the relationship between molecular structures and luminescence properties, both the species and amounts of red and NIR TADF molecules are far from meeting the requirements for practical applications. Herein, four new efficient molecules (DQCN-2spAs, TPCN-2spAs, DPCN-2spAs and BPCN-2spAs) are proposed and their photophysical properties are theoretically predicted based on first-principles calculations and thermal vibration correlation function (TVCF) theory. The results show that all molecules exhibit red or NIR emissions and they have fast radiative decay rates and reverse intersystem crossing (RISC) rates, and the excellent TADF luminescence properties are predicted. Moreover, based on spiro-acridine (spAs) as the donor unit, the combination with different acceptors can change the dihedral angle between the ground state and the excited state, the bending degree of the donor is positively correlated with the reorganization energy, and this feature can have a great influence on the non-radiative process. Furthermore, based on these theoretical predictions, experimental verifications are performed and the synthesized BPCN-2spAs is confirmed to be an efficient NIR TADF molecule. Thus, the relationships between basic molecular structures and photophysical properties are revealed, a feasible design strategy is applied and four promising red and NIR TADF molecules are proposed. All these results could contribute to the development of red and NIR TADF emitters and OLEDs.
Collapse
Affiliation(s)
- Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Haipei Zou
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Qingfang Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Yuanyuan Xu
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China. .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China
| |
Collapse
|
3
|
A Review on the Synthesis of Fluorescent Five- and Six-Membered Ring Azaheterocycles. Molecules 2022; 27:molecules27196321. [PMID: 36234858 PMCID: PMC9570872 DOI: 10.3390/molecules27196321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Azaheterocycles rings with five and six members are important tools for the obtaining of fluorescent materials and fluorescent sensors. The relevant advances in the synthesis of azaheterocyclic derivatives and their optical properties investigation, particularly in the last ten years, was our main objective on this review. The review is organized according to the size of the azaheterocycle ring, 5-, 6-membered and fused ring azaheterocycles, as well as our recent contribution on this research field. In each case, the reaction pathways with reaction condition and obtained yield, and evaluation of the optical properties of the obtained products were briefly presented.
Collapse
|