1
|
Liu Y, Gu X, Zhang X, Xu M, Zhang Z, Liang T. Iodine-mediated oxidative triple functionalization of indolines with azoles and diazonium salts. Chem Commun (Camb) 2024; 60:4613-4616. [PMID: 38587256 DOI: 10.1039/d4cc00856a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We report an innovative synthetic strategy for the generation of polysubstituted indoles from indolines, aryldiazonium salts, and azoles. The methodology encompasses an electrophilic substitution reaction affording C5-indoline intermediates which undergo an iodine-mediated oxidative transformation coupled with C-H functionalization to yield the indole derivatives.
Collapse
Affiliation(s)
- Yifeng Liu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoting Gu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoxiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Meilan Xu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
2
|
Zheng T, Xu J, Cheng S, Ye J, Ma S, Tong R. Green Halogenation of Indoles with Oxone-Halide. J Org Chem 2023; 88:11497-11503. [PMID: 37499121 DOI: 10.1021/acs.joc.3c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Oxidative functionalization of indoles is one of the most widely used approaches to exploit the synthetic utility of indoles. In continuation of our research interest in the green oxidation of indoles, we further explore the oxidation of indoles with oxone-halide and discover that the protecting group on the nitrogen of indoles plays a decisive role in controlling the pathways of indole oxidation with oxone-halide. An electron-withdrawing group on the nitrogen of indoles (N-EWG) enables C2 halogenation with stoichiometric halide, while C3 halogenation could be selectively achieved by using stoichiometric halide without dependence on the electronic property of the protecting group on the indole nitrogen. Different from our previous results obtained by using catalytic halide, these findings lead to the development of an environmentally friendly, efficient, and mild protocol for access to 2- or 3-haloindoles (chloro and bromo). As compared to the previous synthetic methods for 2-/3-haloindoles, our method exploits the in situ-generated reactive halogenating species from oxone-halide for halogenation of indoles and thus eliminates the use of stoichiometric halogenating agents and the production of toxic and hazardous organic byproducts derived from oxidants.
Collapse
Affiliation(s)
- Tao Zheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaojun Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jianghai Ye
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shiqiang Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
3
|
Zhang Y, Huang Y, Yu K, Zhang X, Yu W, Tang J, Tian Y, Wei W, Zhang Z, Liang T. Iron–iodine co-catalysis towards tandem C–N/C–C bond formation: one-pot regioselective synthesis of 2-amino-3-alkylindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01329k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient intermolecular C2,3-H aminoalkylation of indoles with 9H-xanthenes and azoles via iron–iodine co-catalyzed tandem C–N/C–C bond formation has been developed.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yating Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kewei Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhua Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiale Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yiran Tian
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|