1
|
Neal SJ, Schapiro SJ, Lambeth SP, Magden ER. Nursery- vs. Mother-Reared Baboons: Reproductive Success and Health Parameters. Vet Sci 2024; 11:416. [PMID: 39330795 PMCID: PMC11436101 DOI: 10.3390/vetsci11090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
There is a plethora of data demonstrating the deleterious consequences of nursery rearing in nonhuman primates (NHPs). However, baboon studies report varying consequences of nursery rearing, from no differences in reproduction and sociality to moderate differences in social cognition and abnormal behavior. We compared health and reproductive parameters in a large sample (N= 231) of mother-reared (MR) and nursery-reared (NR) captive olive baboons housed at the Keeling Center for Comparative Medicine and Research, Texas. MR baboons had higher neutrophil-to-lymphocyte ratios and heart rates than NR baboons. Rearing was not a significant predictor of body condition score or body weight (p > 0.20), and MR and NR individuals did not differ in the level of wounding observed (p > 0.70). The proportion of successful births across NR and MR females was also not significantly different (p > 0.70), nor were rates of maternal neglect and infant death. These data suggest minimal differences in health and reproductive parameters across rearing statuses in baboons housed at this facility. In conjunction with previous research that also seems to show minimal differences as a function of rearing in baboons, but directly contrast with data in other NHP species, these data suggest that baboons may be more robust against deleterious effects of abnormal rearing conditions than other NHP species.
Collapse
Affiliation(s)
- Sarah J Neal
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research (KCCMR), The University of Texas MD Anderson Cancer Center, 650 Cool Water Drive, Bastrop, TX 78602, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research (KCCMR), The University of Texas MD Anderson Cancer Center, 650 Cool Water Drive, Bastrop, TX 78602, USA
| | - Susan P Lambeth
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research (KCCMR), The University of Texas MD Anderson Cancer Center, 650 Cool Water Drive, Bastrop, TX 78602, USA
| | - Elizabeth R Magden
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research (KCCMR), The University of Texas MD Anderson Cancer Center, 650 Cool Water Drive, Bastrop, TX 78602, USA
| |
Collapse
|
2
|
Ramos Sarmiento K, Carr A, Diener C, Locey KJ, Gibbons SM. Island biogeography theory provides a plausible explanation for why larger vertebrates and taller humans have more diverse gut microbiomes. THE ISME JOURNAL 2024; 18:wrae114. [PMID: 38904949 PMCID: PMC11253425 DOI: 10.1093/ismejo/wrae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Prior work has shown a positive scaling relationship between vertebrate body size, human height, and gut microbiome alpha diversity. This observation mirrors commonly observed species area relationships (SARs) in many other ecosystems. Here, we expand these observations to several large datasets, showing that this size-diversity scaling relationship is independent of relevant covariates, like diet, body mass index, age, sex, bowel movement frequency, antibiotic usage, and cardiometabolic health markers. Island biogeography theory (IBT), which predicts that larger islands tend to harbor greater species diversity through neutral demographic processes, provides a simple mechanism for positive SARs. Using a gut-adapted IBT model, we demonstrated that increasing the length of a flow-through ecosystem led to increased species diversity, closely matching our empirical observations. We delve into the possible clinical implications of these SARs in the American Gut cohort. Consistent with prior observations that lower alpha diversity is a risk factor for Clostridioides difficile infection (CDI), we found that individuals who reported a history of CDI were shorter than those who did not and that this relationship was mediated by alpha diversity. We observed that vegetable consumption had a much stronger association with CDI history, which was also partially mediated by alpha diversity. In summary, we find that the positive scaling observed between body size and gut alpha diversity can be plausibly explained by a gut-adapted IBT model, may be related to CDI risk, and vegetable intake appears to independently mitigate this risk, although additional work is needed to validate the potential disease risk implications.
Collapse
Affiliation(s)
| | - Alex Carr
- Institute for Systems Biology, Seattle, WA 98109, United States
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, United States
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA 98109, United States
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Kenneth J Locey
- Center for Quality, Safety & Value Analytics, Rush University Medical Center, Chicago, IL 60612, United States
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA 98109, United States
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, United States
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, United States
- Science Institute, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
3
|
Torfs JRR, Eens M, Laméris DW, Stevens JMG, Verspeek J, Guery JP, Staes N. Visually assessed body condition shows high heritability in a pedigreed great ape population. Am J Primatol 2023; 85:e23540. [PMID: 37507232 DOI: 10.1002/ajp.23540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Body condition, a measure for relative fat mass, is associated with primate health, fitness, and overall welfare. Body condition is often influenced by dietary factors, age, and/or sex, but several body condition measures (body weight, weight-to-height ratios, and so on) also show high heritability across primate species, indicating a role of genetic effects. Although different measures for body condition exist, many require direct handling of animals, which is invasive, time-consuming, and expensive, making them impractical in wild and captive settings. Therefore, noninvasive visual body condition score (BCS) systems were developed for various animal species, including macaques and chimpanzees, to visually assess relative fat mass. Here we evaluate the utility of a visual BCS system in bonobos by assessing (1) inter-rater reliability, (2) links with body mass, a traditional hands-on measure of condition, and (3) the factors driving individual variation in BCS. We adapted the chimpanzee BCS system to rate 76 bonobos in 11 European zoos (92% of the adult population). Inter-rater reliability was high (s* = 0.948), BCSs were positively associated with body mass (β = 0.075) and not predicted by diet, sex, or age, nor were they associated with a higher abundance of obesity-related diseases. Instead, BCSs showed high levels of heritability (h2 = 0.637), indicating that a majority of body condition variation in bonobos is attributable to genetic similarity of the individuals. This is in line with reported h2 -values for traditional body condition measures in primates and provides support for the reliability of visual BCS systems in great apes. The results of this study emphasize an often unanticipated role of genetics in determining primate body fat and health that has implications for the management of captive primates. Application of this tool in wild populations would aid to unravel environmental from genetic drivers of body condition variation in primates.
Collapse
Affiliation(s)
- Jonas R R Torfs
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Daan W Laméris
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | - Jeroen M G Stevens
- SALTO Agro- and Biotechnology, Odisee University College, Sint-Niklaas, Belgium
| | - Jonas Verspeek
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| | | | - Nicky Staes
- Behavioural Ecology and Ecophysiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Zoo Antwerp Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Fultz A, Lewis R, Kelly L, Garbarino J. Behavioral Welfare Research for the Management of Sanctuary Chimpanzees ( Pan troglodytes). Animals (Basel) 2023; 13:2595. [PMID: 37627388 PMCID: PMC10451351 DOI: 10.3390/ani13162595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Chimp Haven is a sanctuary for chimpanzees retired from biomedical research, rescued from the pet trade, or re-homed after other organizations could no longer care for them. To provide optimal care for over 300 chimpanzees, Chimp Haven's animal care team includes experts in behavioral science, veterinary treatment, and husbandry practices. To aid these teams in making routine welfare management decisions, a system of behavioral metrics provides objective data to guide decisions and track outcomes. Chimp Haven has built and piloted seven behavioral metric protocols over the past 5 years to provide staff with an objective and comprehensive picture of the chimpanzees' behavioral welfare. The data from behavioral observations, staff surveys, and routine staff documentation are analyzed and processed through Google Forms, ZooMonitor, Microsoft Power Bi, Microsoft Excel, and R. Each metric assists staff in making data-based decisions regarding the management of captive chimpanzees related to abnormal behavior, hair loss, wounding, social relationships, positive reinforcement training and overall wellness. In this article, we explore examples of each metric and how they have been utilized to monitor and make decisions for both social groups of chimpanzees as well as individuals. These metrics can be collected and shared easily in an understandable format, which may provide an important framework for others to follow to enable the tracking of welfare for other sanctuaries, non-human primates, as well as other species.
Collapse
Affiliation(s)
- Amy Fultz
- Chimp Haven, 13600 Chimpanzee Place, Keithville, LA 71047, USA; (R.L.); (L.K.); (J.G.)
| | | | | | | |
Collapse
|
5
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Gerstner KF, Pruetz JD. Wild Chimpanzee Welfare: A Focus on Nutrition, Foraging and Health to Inform Great Ape Welfare in the Wild and in Captivity. Animals (Basel) 2022; 12:ani12233370. [PMID: 36496890 PMCID: PMC9735707 DOI: 10.3390/ani12233370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Adequate nutrition is essential for individual well-being, survival and reproductive fitness. Yet, in wild animals, including great apes, scoring nutrition or health comes with many challenges. Here, we have two aims: first, broadly review the scientific literature regarding nutritional data on wild chimpanzee foods to get a better understanding what nutrients foods comprise of, and second, highlight important findings on wild chimpanzee nutrition and welfare pertaining to diet. We discuss variation in macro and micronutrients in food items consumed and their role in chimpanzee health across chimpanzee subspecies from multiple study sites. We found a lack of information pertaining to nutritional consumption rates of daily diets. Second, we call for a fresh, in-depth discussion on wild chimpanzee welfare issues is of foremost importance to inform conservation projects and particularly settings where humans and chimpanzees may interact, because such conversation can reveal how specific or general welfare measures can (a) inform our knowledge of an individual's, group's, and population's welfare, (b) provide additional measures from the study of wild chimpanzee ecology that can guide the welfare of captive chimpanzees, and (c) can enable comparative study of welfare across wild populations. A summary of the current literature on approaches to measuring wild chimpanzee health and welfare status, to our knowledge, has yet to be done.
Collapse
|
7
|
The evolution of human step counts and its association with the risk of chronic disease. Curr Biol 2022; 32:R1206-R1214. [PMID: 36347224 DOI: 10.1016/j.cub.2022.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Walking - humans' most fundamental form of moderate intensity physical activity - is associated with reduced risks of morbidity and mortality. Evolutionary perspectives have contributed much to understanding the effects of walking and other physical activities on health; however, we know comparatively little about how step counts (steps taken per day) changed over the course of human evolution, potentially affecting how selection operated on physiological responses to moderate intensity physical activity that influence morbidity and mortality. Here, we compare step counts across humans and our closest living relatives, the great apes. Compiling data from epidemiology and comparative physiology, we show how step counts more than tripled during human evolution, potentially linking higher levels of moderate intensity physical activity with reduced morbidity and mortality, and we highlight how recent decreases in step counts are an evolutionary mismatch. We raise the hypothesis that the dose-response relationship between moderate intensity physical activity and health was shifted in humans to require more steps per day to promote extended healthspan and lifespan.
Collapse
|
8
|
“Engaging the Enemy”: Orangutan (Pongo pygmaeus morio) Conservation in Human Modified Environments in the Kinabatangan floodplain of Sabah, Malaysian Borneo. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00288-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
Throughout the equatorial tropics, forest conversion to agriculture often fragments crucial primate habitat. In 30 years, 80% of the alluvial lowland forests along the Kinabatangan River in Sabah, Malaysian Borneo, have been supplanted by oil palm (Elaeis guineensis) plantations. Today, only about 20% of the former orangutan (Pongo pygmaeus morio) population remains in the region. Because most of the land is now under the tenure of agribusiness companies, we used a pragmatic approach of mixed biosocial methods and citizen science engagement of oil palm growers (N = 6) as active conservation partners to study orangutan use of the privately administered landscape between protected forest fragments. We found that 22 of 25 remanent forest patches (0.5 to 242 hectares) surveyed within plantations contained food or shelter resources useful for orangutans. Of these, 20 are in regular transitory use by wider-ranging adult male orangutans, and in 9 patches, females are resident and raising offspring isolated within oil palm plantations. These findings indicate that orangutans retain a measure of normal metapopulation dynamics necessary for viability at the landscape level despite drastic habitat modification. We found that barriers to in situ conservation in these agroforest matrices were due to the following misconceptions across sectors: 1) Good farming practices require exclusion of wildlife; 2) Orangutans seen in plantations must be “rescued” by people; and 3) Translocation is an appropriate conservation strategy, and nondetrimental to orangutans. Our exploratory study exemplifies the value of biosocial methods and collaboration with industrial-scale farmers to support primate resilience in forests fragmented by agriculture.
Collapse
|
9
|
Assessing chimpanzees’ fluency of movement: applications for monitoring health and welfare. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|