1
|
Garcia Neto PG, Titon SCM, Muxel SM, Titon B, Figueiredo ACD, Floreste FR, Lima AS, Assis VR, Gomes FR. Immune and endocrine alterations at the early stage of inflammatory assemblage in toads after stimulation with heat-killed bacteria (Aeromonas hydrophila). Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111606. [PMID: 38354902 DOI: 10.1016/j.cbpa.2024.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The red-leg syndrome in amphibians is a condition commonly associated with the bacteria Aeromonas hydrophila and has led to population declines. However, there is little information concerning the inflammatory assemblage in infected anurans. We evaluated immune and endocrine alterations induced by stimulation with heat-killed A. hydrophila injected in Rhinella diptycha toads. Control animals were not manipulated, while the others were separated into groups that received intraperitoneal injection of 300 μl of saline or heat-killed bacteria: groups A1 (3 × 107 cells), A2 (3 × 108 cells), and A3 (3 × 109 cells). Animals were bled and euthanized six hours post-injection. We evaluated neutrophil: lymphocyte ratio (NLR), plasma bacterial killing ability (BKA), testosterone (T), melatonin (MEL), and corticosterone (CORT) plasma levels. Heat-killed A. hydrophila increased CORT and NLR, and decreased MEL, especially at higher concentrations. There was no effect of treatment on T and BKA. We then selected the saline and A3 groups to conduct mRNA expression of several genes including glucocorticoid receptor (GR), toll-like receptor-4 (TLR-4), interferon-γ (IFN-γ), interleukin (IL)-1β, IL-6, and IL-10. We found higher expression of IL-6, IL-1β, IL-10, and IFN-γ in group A3 compared to the saline group. These results indicate the beginning of an inflammatory assemblage, notably at the two highest concentrations of bacteria, and give a better understanding of how anurans respond to an infection within an integrated perspective, evaluating different physiological aspects. Future studies should investigate later phases of the immune response to elucidate more about the inflammation in amphibians challenged with A. hydrophila.
Collapse
Affiliation(s)
- Patrício G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil.
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Sandra M Muxel
- Laboratório de Neuroimunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes n° 1730, Cidade Universitária, São Paulo, SP CEP 05508-000, Brazil.
| | - Braz Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Aymam C de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Felipe R Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Alan S Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil
| | - Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil; Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), 3720 Spectrum Boulevard. Tampa, FL 33612-9415, United States. https://twitter.com/VaniaRAssis1
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão - Travessa 14 - n° 101, Cidade Universitária, São Paulo, SP CEP 05508-900, Brazil.
| |
Collapse
|
2
|
Sonnweber R, Stevens JMG, Hohmann G, Deschner T, Behringer V. Plasma Testosterone and Androstenedione Levels Follow the Same Sex-Specific Patterns in the Two Pan Species. BIOLOGY 2022; 11:biology11091275. [PMID: 36138754 PMCID: PMC9495489 DOI: 10.3390/biology11091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Generally male mammals are more aggressive than their female peers. In these males, aggressive behavior is linked to levels of androgens; higher levels of testosterone are predictive of higher aggression rates or more severe aggression. There are some species where the pattern of sex-specific aggression is reversed, and it was hypothesized that high levels of androgens may be responsible for social dominance and aggressiveness in these females. Studies so far found that females of species with sex-reversed aggression patterns (e.g., spotted hyenas and ring-tailed lemurs) had lower plasma testosterone levels than their male peers, but a precursor of testosterone, androstenedione, was comparable or even higher in females than in males. This supported the idea that selection for female aggressiveness may be facilitated through augmented androgen secretion. Here we show that in two sister species, bonobos and chimpanzees, that differ in terms of sex-specific aggression patterns, females have lower plasma testosterone levels and higher plasma androstenedione levels than their male peers. Thus, our data do not support a theory of a role of female androgen levels on the expression of sex-specific patterns of aggression. Abstract In most animals, males are considered more aggressive, in terms of frequency and intensity of aggressive behaviors, than their female peers. However, in several species this widespread male-biased aggression pattern is either extenuated, absent, or even sex-reversed. Studies investigating potential neuro-physiological mechanisms driving the selection for female aggression in these species have revealed an important, but not exclusive role of androgens in the expression of the observed sex-specific behavioral patterns. Two very closely related mammalian species that markedly differ in the expression and degree of sex-specific aggression are the two Pan species, where the chimpanzee societies are male-dominated while in bonobos sex-biased aggression patterns are alleviated. Using liquid chromatography–mass spectrometry (LC-MS) methods, we measured levels of plasma testosterone and androstenedione levels in male and female zoo-housed bonobos (N = 21; 12 females, 9 males) and chimpanzees (N = 41; 27 females, 14 males). Our results show comparable absolute and relative intersexual patterns of blood androgen levels in both species of Pan. Plasma testosterone levels were higher in males (bonobos: females: average 0.53 ± 0.30 ng/mL; males 6.70 ± 2.93 ng/mL; chimpanzees: females: average 0.40 ± 0.23 ng/mL; males 5.84 ± 3.63 ng/mL) and plasma androstenedione levels were higher in females of either species (bonobos: females: average 1.83 ± 0.87 ng/mL; males 1.13 ± 0.44 ng/mL; chimpanzees: females: average 1.84 ± 0.92 ng/mL; males 1.22 ± 0.55 ng/mL). The latter result speaks against a role of androstenedione in the mediation of heightened female aggression, as had been suggested based on studies in other mammal species where females are dominant and show high levels of female aggressiveness.
Collapse
Affiliation(s)
- Ruth Sonnweber
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Correspondence:
| | - Jeroen M. G. Stevens
- Behavioral Ecology and Ecophysiology, Department of Biology, University of Antwerp, Campus Drie Eiken, Building D, D1.21, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Gottfried Hohmann
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell/Konstanz, Germany
| | - Tobias Deschner
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49090 Osnabrück, Germany
| | - Verena Behringer
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Reid MJC, Trivedy C, Schillaci MA. Primatology and one health: Two disciplines destined to come together. Am J Primatol 2022; 84:e23391. [PMID: 35570585 DOI: 10.1002/ajp.23391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Michael J C Reid
- Durham College, Interdisciplinary Studies, Oshawa, Ontario, Canada
| | - Chet Trivedy
- Blizard Institute, Queen Mary University of London, London, UK
| | - Michael A Schillaci
- Department of Social Sciences and Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|