1
|
Druelle F, Supiot A, Meulemans S, Schouteden N, Molina-Vila P, Rimbaud B, Aerts P, Berillon G. The quadrupedal walking gait of the olive baboon, Papio anubis: an exploratory study integrating kinematics and EMG. J Exp Biol 2021; 224:271005. [PMID: 34292320 DOI: 10.1242/jeb.242587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
Primates exhibit unusual quadrupedal features (e.g. diagonal gaits, compliant walk) compared with other quadrupedal mammals. Their origin and diversification in arboreal habitats have certainly shaped the mechanics of their walking pattern to meet the functional requirements necessary for balance control in unstable and discontinuous environments. In turn, the requirements for mechanical stability probably conflict with mechanical energy exchange. In order to investigate these aspects, we conducted an integrative study on quadrupedal walking in the olive baboon (Papio anubis) at the Primatology station of the CNRS in France. Based on kinematics, we describe the centre of mass mechanics of the normal quadrupedal gait performed on the ground, as well as in different gait and substrate contexts. In addition, we studied the muscular activity of six hindlimb muscles using non-invasive surface probes. Our results show that baboons can rely on an inverted pendulum-like exchange of energy (57% on average, with a maximal observed value of 84%) when walking slowly (<0.9 m s-1) with a tight limb phase (∼55%) on the ground using diagonal sequence gaits. In this context, the muscular activity is similar to that of other quadrupedal mammals, thus reflecting the primary functions of the muscles for limb movement and support. In contrast, walking on a suspended branch generates kinematic and muscular adjustments to ensure better control and to maintain stability. Finally, walking using the lateral sequence gait increases muscular effort and reduces the potential for high recovery rates. The present exploratory study thus supports the assumption that primates are able to make use of an inverted pendulum mechanism on the ground using a diagonal walking gait, yet a different footfall pattern and substrate appear to influence muscular effort and efficiency.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France.,Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium
| | - Anthony Supiot
- Gait and Motion Analysis Laboratory, Assistance Publique des Hôpitaux de Paris (AP-HP), Robert Debré University Hospital, 75004 Paris, France
| | - Silke Meulemans
- Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium
| | - Niels Schouteden
- Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium.,Monde Sauvage Safari Parc, 4920 Aywaille, Belgium
| | - Pablo Molina-Vila
- Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France
| | - Peter Aerts
- Functional Morphology Laboratory, University of Antwerp, 2610 Antwerp, Belgium.,Department of Movement and Sports Sciences, University of Ghent, 9000 Gent, Belgium
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, 75116 Paris, France.,Primatology Station of the CNRS-Celphedia, UAR 846, 13790 Rousset-sur-Arc, France
| |
Collapse
|
2
|
Webb D, Sparrow WA. Description of joint movements in human and non-human primate locomotion using Fourier analysis. Primates 2007; 48:277-92. [PMID: 17516132 DOI: 10.1007/s10329-007-0043-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 01/31/2007] [Indexed: 11/29/2022]
Abstract
To describe and help interpret joint movements in various forms of primate locomotion, we explored the use of Fourier analysis to represent changing joint angles as a series of sine and cosine curves added together to approximate the raw angular data. Results are presented for four joints (shoulder, elbow, hip and knee) with emphasis on the shoulder, and for five types of locomotion (catarhine primate quadrupedal walking, human hands-and-feet creeping and hands-and-knees creeping, and human walking and running). Fourier analysis facilitates functional interpretation of the angles of all four joints, by providing average joint angles and an indication of the number of peaks and troughs in the angular data. The description of limb movements also afforded us the opportunity to compare human and other catarhine joint angles, and we interpret the Fourier results in terms of locomotor posture and type. In addition, the shoulder data are useful for determination of some aspects of interlimb coordination. Non-human primates walking quadrupedally and humans creeping on hands and knees generally evince diagonal couplets interlimb coordination, in which the hand on one side strikes the substrate at about the same time as the contralateral foot or knee. Furthermore, human walking and running seem to follow a similar pattern, as indicated by Fourier analysis. From our data it is concluded that human bipedal gaits are qualitatively similar to diagonal couplets gaits in other primates, but quite different from the lateral couplets gaits used by many non-primate mammals. A number of other benefits of Fourier analysis in primate locomotion studies are also discussed. These include the ability to make statistical comparisons among various types of limb movements in a wide variety of species, a simple archival technique for limb movement data, and a greater understanding of the variability of locomotor movements.
Collapse
Affiliation(s)
- David Webb
- Department of Anthropology and Sociology, Kutztown University, Kutztown, PA 19530, USA.
| | | |
Collapse
|
3
|
Stevens NJ. Stability, limb coordination and substrate type: the ecorelevance of gait sequence pattern in primates. ACTA ACUST UNITED AC 2006; 305:953-63. [PMID: 17029277 DOI: 10.1002/jez.a.336] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The coordination of limb movements during mammalian locomotion has been well documented in the literature. Most mammals use lateral sequence (LS) gaits, in which a forelimb follows an ipsilateral hind limb during the stride cycle. Primates, however, tend to utilize diagonal sequence (DS) gaits, whereby a contralateral forelimb follows a given hind limb during the stride cycle. A number of scenarios have been offered to explain why primates favor DS gaits, most of them relating to the use of the arboreal habitat and, in particular, the exploitation of a terminal branch niche. Yet to date, there is surprisingly little evidence to support the advantage of DS gaits for negotiating different aspects of the terminal branch environment. Nonetheless, it is apparent that primates possess unique morphologies and a higher than typically recognized degree of flexibility in gait sequence pattern, both of which likely offer advantages for moving upon discontinuous and unstable terminal branches. This paper reviews potential explanations for the use of DS gaits in primates and considers mechanisms by which gait sequence may be altered during different types of arboreal challenges.
Collapse
Affiliation(s)
- Nancy Jeanne Stevens
- Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
4
|
Schmitt D. Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol 2003; 206:1437-48. [PMID: 12654883 DOI: 10.1242/jeb.00279] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An understanding of the evolution of human bipedalism can provide valuable insights into the biomechanical and physiological characteristics of locomotion in modern humans. The walking gaits of humans, other bipeds and most quadrupedal mammals can best be described by using an inverted-pendulum model, in which there is minimal change in flexion of the limb joints during stance phase. As a result, it seems logical that the evolution of bipedalism in humans involved a simple transition from a relatively stiff-legged quadrupedalism in a terrestrial ancestor to relatively stiff-legged bipedalism in early humans. However, experimental studies of locomotion in humans and nonhuman primates have shown that the evolution of bipedalism involved a much more complex series of transitions, originating with a relatively compliant form of quadrupedalism. These studies show that relatively compliant walking gaits allow primates to achieve fast walking speeds using long strides, low stride frequencies, relatively low peak vertical forces, and relatively high impact shock attenuation ratios. A relatively compliant, ape-like bipedal walking style is consistent with the anatomy of early hominids and may have been an effective gait for a small biped with relatively small and less stabilized joints, which had not yet completely forsaken arboreal locomotion. Laboratory-based studies of primates also suggest that human bipedalism arose not from a terrestrial ancestor but rather from a climbing, arboreal forerunner. Experimental data, in conjunction with anatomical data on early human ancestors, show clearly that a relatively stiff modern human gait and associated physiological and anatomical adaptations are not primitive retentions from a primate ancestor, but are instead recently acquired characters of our genus.
Collapse
Affiliation(s)
- Daniel Schmitt
- Department of Biological Anthropology and Anatomy, Duke University, Durham NC, USA.
| |
Collapse
|
5
|
Shapiro LJ, Anapol FC, Jungers WL. Interlimb coordination, gait, and neural control of quadrupedalism in chimpanzees. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1997; 102:177-86. [PMID: 9066899 DOI: 10.1002/(sici)1096-8644(199702)102:2<177::aid-ajpa3>3.0.co;2-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interlimb coordination is directly relevant to the understanding of the neural control of locomotion, but few studies addressing this topic for nonhuman primates are available, and no data exist for any hominoid other than humans. As a follow-up to Jungers and Anapol's ([1985] Am. J. Phys. Anthropol. 67:89-97) analysis on a lemur and talapoin monkey, we describe here the patterns of interlimb coordination in two chimpanzees as revealed by electromyography. Like the lemur and talapoin monkey, ipsilateral limb coupling in chimpanzees is characterized by variability about preferred modes within individual gaits. During symmetrical gaits, limb coupling patterns in the chimpanzee are also influenced by kinematic differences in hindlimb placement ("overstriding"). These observations reflect the neurological constraints placed on locomotion but also emphasize the overall flexibility of locomotor neural mechanisms. Interlimb coordination patterns are also species-specific, exhibiting significant differences among primate taxa and between primates and cats. Interspecific differences may be suggestive of phylogenetic divergence in the basic mechanisms for neural control of locomotion, but do not preclude morphological explanations for observed differences in interlimb coordination across species.
Collapse
Affiliation(s)
- L J Shapiro
- Department of Anthropology, University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
6
|
Shapiro LJ, Jungers WL. Electromyography of back muscles during quadrupedal and bipedal walking in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1994; 93:491-504. [PMID: 8048470 DOI: 10.1002/ajpa.1330930408] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique.
Collapse
Affiliation(s)
- L J Shapiro
- Department of Anthropology, University of Texas at Austin 78712
| | | |
Collapse
|
7
|
Vilensky JA. Locomotor behavior and control in human and non-human primates: comparisons with cats and dogs. Neurosci Biobehav Rev 1987; 11:263-74. [PMID: 3120063 DOI: 10.1016/s0149-7634(87)80013-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For many years the cat has been the accepted mammalian model for investigations on the neural control of locomotion. The results from such studies, and also similar studies on dogs, have been assumed to represent the typical mammalian condition. The primary purpose of this review is to evaluate this assumption relative to human and non-human primates. A second purpose is to acquaint investigators of mammalian locomotor behavior and control with the large amount of data available on this topic for non-human primates. The analysis shows that non-human primates are different from carnivores in footfall patterns, gaits, gait transitions, relative stride length, limb angular excursions, weight support, mechanisms of propulsion, spinal vs. supraspinal control of stepping, and possible EMG patterns. Humans exhibit more similarities with other primates than with cats or dogs, but also appear to be unique in many ways. Thus, it is clear that extrapolations of results based on cat or dog experiments may not be applicable to non-human or human primates. Furthermore, although non-human primates unquestionably make a better experimental model than cats or dogs for understanding human locomotor control mechanisms, exactly how much better remains to be determined.
Collapse
Affiliation(s)
- J A Vilensky
- Department of Anatomy, Indiana University School of Medicine, Fort Wayne 46805
| |
Collapse
|
8
|
Anapol FC, Jungers WL. Architectural and histochemical diversity within the quadriceps femoris of the brown lemur (Lemur fulvus). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1986; 69:355-75. [PMID: 3706515 DOI: 10.1002/ajpa.1330690308] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Physiologically related features of muscle morphology are considered with regard to functional adaptation for locomotor and postural behavior in the brown lemur (Lemur fulvus). Reduced physiological cross-sectional area, estimated maximum excursion of the tendon of insertion, length of tendon per muscle fasciculus, and areal fiber type composition were examined in the quadriceps femoris in order to assess the extent of a "division of labor" among four apparent synergists. Each of these four muscles in this prosimian primate displays a distinguishing constellation of morphological features that implies functional specialization during posture and normal locomotion (walk/run, galloping, leaping). Vastus medialis is best suited for rapid whole muscle recruitment and may be reserved for relatively vigorous activities such as galloping and leaping (e.g., small cross-sectional area per mass, long excursion, predominance of fast-low oxidative fibers, relatively little tendon per fasciculus). In theory, rectus femoris could be employed isometrically in order to store elastic strain energy during all phasic activities (e.g., large cross-sectional area per mass, short excursion, predominance of fast-high oxidative fibers, large amount of tendon per fasciculus). Vastus intermedius exhibits an overall morphology indicative of a typical postural muscle (e.g., substantial cross-sectional area, short excursion, predominance of slow-high oxidative fibers, large amount of tendon per fasciculus). The construction of vastus lateralis reflects an adaptation for high force, relatively high velocity, and resistance to fatigue (e.g., large cross-sectional area, long excursion, most heterogeneous distribution of fiber types, large amount of tendon per fasciculus); this muscle is probably the primary contributor to a wide range of locomotor behaviors in lemurs. Marked dramatic architectural disparity among the four bellies, coupled with relative overall fiber type heterogeneity, suggests the potential for exceptional flexibility in muscle recruitment within this mass. One interpretation of this relatively complex neuromuscular organization in the brown lemur is that it represents an adaptation for the exploitation of a three-dimensional arboreal environment by rapid quadrupedalism and leaping among irregular and spatially disordered substrates.
Collapse
|