1
|
Taufik L, Teixeira JC, Llamas B, Sudoyo H, Tobler R, Purnomo GA. Human Genetic Research in Wallacea and Sahul: Recent Findings and Future Prospects. Genes (Basel) 2022; 13:genes13122373. [PMID: 36553640 PMCID: PMC9778601 DOI: 10.3390/genes13122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Genomic sequence data from worldwide human populations have provided a range of novel insights into our shared ancestry and the historical migrations that have shaped our global genetic diversity. However, a comprehensive understanding of these fundamental questions has been impeded by the lack of inclusion of many Indigenous populations in genomic surveys, including those from the Wallacean archipelago (which comprises islands of present-day Indonesia located east and west of Wallace's and Lydekker's Lines, respectively) and the former continent of Sahul (which once combined New Guinea and Australia during lower sea levels in the Pleistocene). Notably, these regions have been important areas of human evolution throughout the Late Pleistocene, as documented by diverse fossil and archaeological records which attest to the regional presence of multiple hominin species prior to the arrival of anatomically modern human (AMH) migrants. In this review, we collate and discuss key findings from the past decade of population genetic and phylogeographic literature focussed on the hominin history in Wallacea and Sahul. Specifically, we examine the evidence for the timing and direction of the ancient AMH migratory movements and subsequent hominin mixing events, emphasising several novel but consistent results that have important implications for addressing these questions. Finally, we suggest potentially lucrative directions for future genetic research in this key region of human evolution.
Collapse
Affiliation(s)
- Leonard Taufik
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
- Correspondence: (L.T.); (G.A.P.)
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
- Centre for Interdisciplinary Studies, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 2601, Australia
- Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, SA 5001, Australia
| | - Herawati Sudoyo
- Mochtar Riady Institute for Nanotechnology, Tangerang 15810, Indonesia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Evolution of Cultural Diversity Initiative, Australian National University, Canberra, ACT 2601, Australia
| | - Gludhug A. Purnomo
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (L.T.); (G.A.P.)
| |
Collapse
|
2
|
Wasef S, Wright JL, Adams S, Westaway MC, Flinders C, Willerslev E, Lambert D. Insights Into Aboriginal Australian Mortuary Practices: Perspectives From Ancient DNA. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
3
|
Strobl C, Churchill Cihlar J, Lagacé R, Wootton S, Roth C, Huber N, Schnaller L, Zimmermann B, Huber G, Lay Hong S, Moura-Neto R, Silva R, Alshamali F, Souto L, Anslinger K, Egyed B, Jankova-Ajanovska R, Casas-Vargas A, Usaquén W, Silva D, Barletta-Carrillo C, Tineo DH, Vullo C, Würzner R, Xavier C, Gusmão L, Niederstätter H, Bodner M, Budowle B, Parson W. Evaluation of mitogenome sequence concordance, heteroplasmy detection, and haplogrouping in a worldwide lineage study using the Precision ID mtDNA Whole Genome Panel. Forensic Sci Int Genet 2019; 42:244-251. [PMID: 31382159 DOI: 10.1016/j.fsigen.2019.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 12/24/2022]
Abstract
The emergence of Massively Parallel Sequencing technologies enabled the analysis of full mitochondrial (mt)DNA sequences from forensically relevant samples that have, so far, only been typed in the control region or its hypervariable segments. In this study, we evaluated the performance of a commercially available multiplex-PCR-based assay, the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific), for the amplification and sequencing of the entire mitochondrial genome (mitogenome) from even degraded forensic specimens. For this purpose, more than 500 samples from 24 different populations were selected to cover the vast majority of established superhaplogroups. These are known to harbor different signature sequence motifs corresponding to their phylogenetic background that could have an effect on primer binding and, thus, could limit a broad application of this molecular genetic tool. The selected samples derived from various forensically relevant tissue sources and were DNA extracted using different methods. We evaluated sequence concordance and heteroplasmy detection and compared the findings to conventional Sanger sequencing as well as an orthogonal MPS platform. We discuss advantages and limitations of this approach with respect to forensic genetic workflow and analytical requirements.
Collapse
Affiliation(s)
- Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Robert Lagacé
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Sharon Wootton
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Chantal Roth
- Human Identification Group, ThermoFisher Scientific, San Francisco, CA, USA
| | - Nicole Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zimmermann
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Seah Lay Hong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Rodrigo Moura-Neto
- Laboratório de Biologia Molecular Forense, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosane Silva
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Farida Alshamali
- Dubai Police, Gen. Dept. Forensic Science & Criminology, Dubai, United Arab Emirates
| | - Luis Souto
- Laboratorio de Genética Aplicada, Departamento de Biologia, Universidade de Aveiro, Portugal
| | | | - Balazs Egyed
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Renata Jankova-Ajanovska
- Institute of Forensic Medicine, Criminalistic and Medical Deontology, Medical Faculty, University "St. Cyril and Methodius", Skopje, Macedonia
| | - Andrea Casas-Vargas
- Group of Population Genetics and Identification, Genetics Institute, National University of Colombia, Bogotá, Colombia
| | - Wiliam Usaquén
- Group of Population Genetics and Identification, Genetics Institute, National University of Colombia, Bogotá, Colombia
| | - Dayse Silva
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | - Dean Herman Tineo
- Universidad Nacional Mayor de San Marcos, Instituto de Medicina Legal del Perú, Lima, Peru
| | - Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology team (EAAF), Córdoba, Argentina
| | - Reinhard Würzner
- Division of Hygiene & Med. Microbiology, Medical University of Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonor Gusmão
- DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Harald Niederstätter
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, TX, USA
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
4
|
Yuen LKW, Littlejohn M, Duchêne S, Edwards R, Bukulatjpi S, Binks P, Jackson K, Davies J, Davis JS, Tong SYC, Locarnini S. Tracing Ancient Human Migrations into Sahul Using Hepatitis B Virus Genomes. Mol Biol Evol 2019; 36:942-954. [PMID: 30856252 DOI: 10.1093/molbev/msz021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The entry point and timing of ancient human migration into continental Sahul (the combined landmass of Australia, New Guinea, and Tasmania) are subject to debate. Unique strains of hepatitis B virus (HBV) are endemic among modern-day Australian Aboriginals (HBV/C4) and Indigenous Melanesians (HBV/C3). We postulated that HBV genomes could be used to infer human population movements because the main HBV transmission route in endemic populations is via mother-to-child for genotypes B and C infections. Phylogenetic and phylogeographic analyses of HBV genomes inferred the origin of HBV/C4 to be >59 thousand years ago (ka) (95% HPD: 34-85 ka), and most likely to have occurred on the Sunda Shelf (southeast extension of the continental shelf of Southeast Asia). Our analysis further suggested an age of >51 ka (95% Highest Posterior Density (HPD): 36-67 ka) for the most recent common ancestor of HBV/C4 in Australia, correlating with the arrival time of anatomically modern humans into Australia, with the entry point suggested along a southern route via Timor. While we also inferred the origin of HBC/C3 to be on the Sunda Shelf, our analyses suggested that it was carried into Melanesia by Indigenous Melanesians who migrated through New Guinea north of the highlands. These findings reveal that HBV genomes can be used to infer ancient human population movements.
Collapse
Affiliation(s)
- Lilly K W Yuen
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Rosalind Edwards
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Sarah Bukulatjpi
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Ngalkanbuy Clinic, Galiwin'ku, Australia
| | - Paula Binks
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Jane Davies
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia
| | - Joshua S Davis
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,John Hunter Hospital, Newcastle, Australia
| | - Steven Y C Tong
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia.,Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital, at the Doherty Institute, Melbourne, Australia
| |
Collapse
|
5
|
Wright JL, Wasef S, Heupink TH, Westaway MC, Rasmussen S, Pardoe C, Fourmile GG, Young M, Johnson T, Slade J, Kennedy R, Winch P, Pappin M, Wales T, Bates W“B, Hamilton S, Whyman N, van Holst Pellekaan S, McAllister PJ, Taçon PS, Curnoe D, Li R, Millar C, Subramanian S, Willerslev E, Malaspinas AS, Sikora M, Lambert DM. Ancient nuclear genomes enable repatriation of Indigenous human remains. SCIENCE ADVANCES 2018; 4:eaau5064. [PMID: 30585290 PMCID: PMC6300400 DOI: 10.1126/sciadv.aau5064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/20/2018] [Indexed: 05/21/2023]
Abstract
After European colonization, the ancestral remains of Indigenous people were often collected for scientific research or display in museum collections. For many decades, Indigenous people, including Native Americans and Aboriginal Australians, have fought for their return. However, many of these remains have no recorded provenance, making their repatriation very difficult or impossible. To determine whether DNA-based methods could resolve this important problem, we sequenced 10 nuclear genomes and 27 mitogenomes from ancient pre-European Aboriginal Australians (up to 1540 years before the present) of known provenance and compared them to 100 high-coverage contemporary Aboriginal Australian genomes, also of known provenance. We report substantial ancient population structure showing strong genetic affinities between ancient and contemporary Aboriginal Australian individuals from the same geographic location. Our findings demonstrate the feasibility of successfully identifying the origins of unprovenanced ancestral remains using genomic methods.
Collapse
Affiliation(s)
- Joanne L. Wright
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Sally Wasef
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Tim H. Heupink
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
- Global Health Institute, Epidemiology and Social Medicine, University of Antwerp, Belgium
| | - Michael C. Westaway
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Simon Rasmussen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Colin Pardoe
- Department of Archaeology and Natural History, Australian National University, Canberra, ACT, Australia
| | | | - Michael Young
- Barkandji/Paakantyi Elder, Red Cliffs, VIC, Australia
| | - Trish Johnson
- Barkandji/Paakantyi Elder, Pooncarie, NSW, Australia
| | - Joan Slade
- Ngiyampaa Elder, Ivanhoe, NSW, Australia
| | | | - Patsy Winch
- Mutthi Mutthi Elder, Balranald, NSW, Australia
| | - Mary Pappin
- Mutthi Mutthi Elder, Broken Hill, NSW, Australia
| | - Tapij Wales
- Thanynakwith Elder, Napranum, QLD, Australia
| | | | | | | | - Sheila van Holst Pellekaan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Paul S.C. Taçon
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
| | - Darren Curnoe
- ARC Centre of Excellence for Australian Biodiversity and Heritage and Paleontology, Geobiology and Earth Archives Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Craig Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sankar Subramanian
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Department of Zoology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Anna-Sapfo Malaspinas
- Department of Computational Biology, University of Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Sikora
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. (M.S.); (D.M.L.)
| | - David M. Lambert
- Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Nathan, QLD, Australia
- Corresponding author. (M.S.); (D.M.L.)
| |
Collapse
|
6
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
7
|
Contrasting maternal and paternal genetic variation of hunter-gatherer groups in Thailand. Sci Rep 2018; 8:1536. [PMID: 29367746 PMCID: PMC5784115 DOI: 10.1038/s41598-018-20020-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/11/2018] [Indexed: 11/11/2022] Open
Abstract
The Maniq and Mlabri are the only recorded nomadic hunter-gatherer groups in Thailand. Here, we sequenced complete mitochondrial (mt) DNA genomes and ~2.364 Mbp of non-recombining Y chromosome (NRY) to learn more about the origins of these two enigmatic populations. Both groups exhibited low genetic diversity compared to other Thai populations, and contrasting patterns of mtDNA and NRY diversity: there was greater mtDNA diversity in the Maniq than in the Mlabri, while the converse was true for the NRY. We found basal uniparental lineages in the Maniq, namely mtDNA haplogroups M21a, R21 and M17a, and NRY haplogroup K. Overall, the Maniq are genetically similar to other negrito groups in Southeast Asia. By contrast, the Mlabri haplogroups (B5a1b1 for mtDNA and O1b1a1a1b and O1b1a1a1b1a1 for the NRY) are common lineages in Southeast Asian non-negrito groups, and overall the Mlabri are genetically similar to their linguistic relatives (Htin and Khmu) and other groups from northeastern Thailand. In agreement with previous studies of the Mlabri, our results indicate that the Malbri do not directly descend from the indigenous negritos. Instead, they likely have a recent origin (within the past 1,000 years) by an extreme founder event (involving just one maternal and two paternal lineages) from an agricultural group, most likely the Htin or a closely-related group.
Collapse
|
8
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
9
|
Nagle N, van Oven M, Wilcox S, van Holst Pellekaan S, Tyler-Smith C, Xue Y, Ballantyne KN, Wilcox L, Papac L, Cooke K, van Oorschot RAH, McAllister P, Williams L, Kayser M, Mitchell RJ. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity. Sci Rep 2017; 7:43041. [PMID: 28287095 PMCID: PMC5347126 DOI: 10.1038/srep43041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia’s first settlers.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Sheila van Holst Pellekaan
- Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia.,School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Kaye N Ballantyne
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands.,Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Luka Papac
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - R John Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | | |
Collapse
|
10
|
Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania. J Hum Genet 2016; 62:343-353. [PMID: 27904152 DOI: 10.1038/jhg.2016.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022]
Abstract
Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.
Collapse
|
11
|
Nagle N, Ballantyne KN, van Oven M, Tyler-Smith C, Xue Y, Taylor D, Wilcox S, Wilcox L, Turkalov R, van Oorschot RA, McAllister P, Williams L, Kayser M, Mitchell RJ. Antiquity and diversity of aboriginal Australian Y-chromosomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:367-81. [DOI: 10.1002/ajpa.22886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics; La Trobe Institute of Molecular Sciences, La Trobe University; Melbourne VIC Australia
| | - Kaye N. Ballantyne
- Victorian Police Forensic Services Department; Office of the Chief Forensic Scientist; Melbourne VIC Australia
- Department of Forensic Molecular Biology; Erasmus MC University Medical Center; Rotterdam The Netherlands
| | - Mannis van Oven
- Department of Forensic Molecular Biology; Erasmus MC University Medical Center; Rotterdam The Netherlands
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute; Welcome Trust Genome Campus; Hinxton Cambridgeshire UK
| | - Yali Xue
- The Wellcome Trust Sanger Institute; Welcome Trust Genome Campus; Hinxton Cambridgeshire UK
| | - Duncan Taylor
- Forensic Science South Australia; 21 Divett Place Adelaide SA 5000 Australia
- School of Biological Sciences; Flinders University; Adelaide SA 5001 Australia
| | - Stephen Wilcox
- Australian Genome Research Facility; Melbourne VIC Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics; La Trobe Institute of Molecular Sciences, La Trobe University; Melbourne VIC Australia
| | - Rust Turkalov
- Australian Genome Research Facility; Melbourne VIC Australia
| | - Roland A.H. van Oorschot
- Victorian Police Forensic Services Department; Office of the Chief Forensic Scientist; Melbourne VIC Australia
| | | | - Lesley Williams
- Department of Communities; Child Safety and Disability Services, Queensland Government; Brisbane QLD Australia
| | - Manfred Kayser
- Department of Forensic Molecular Biology; Erasmus MC University Medical Center; Rotterdam The Netherlands
| | - Robert J. Mitchell
- Department of Biochemistry and Genetics; La Trobe Institute of Molecular Sciences, La Trobe University; Melbourne VIC Australia
| | | |
Collapse
|
12
|
Fregel R, Cabrera V, Larruga JM, Abu-Amero KK, González AM. Carriers of Mitochondrial DNA Macrohaplogroup N Lineages Reached Australia around 50,000 Years Ago following a Northern Asian Route. PLoS One 2015; 10:e0129839. [PMID: 26053380 PMCID: PMC4460043 DOI: 10.1371/journal.pone.0129839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Background The modern human colonization of Eurasia and Australia is mostly explained by a single-out-of-Africa exit following a southern coastal route throughout Arabia and India. However, dispersal across the Levant would better explain the introgression with Neanderthals, and more than one exit would fit better with the different ancient genomic components discovered in indigenous Australians and in ancient Europeans. The existence of an additional Northern route used by modern humans to reach Australia was previously deduced from the phylogeography of mtDNA macrohaplogroup N. Here, we present new mtDNA data and new multidisciplinary information that add more support to this northern route. Methods MtDNA hypervariable segments and haplogroup diagnostic coding positions were analyzed in 2,278 Saudi Arabs, from which 1,725 are new samples. Besides, we used 623 published mtDNA genomes belonging to macrohaplogroup N, but not R, to build updated phylogenetic trees to calculate their coalescence ages, and more than 70,000 partial mtDNA sequences were screened to establish their respective geographic ranges. Results The Saudi mtDNA profile confirms the absence of autochthonous mtDNA lineages in Arabia with coalescence ages deep enough to support population continuity in the region since the out-of-Africa episode. In contrast to Australia, where N(xR) haplogroups are found in high frequency and with deep coalescence ages, there are not autochthonous N(xR) lineages in India nor N(xR) branches with coalescence ages as deep as those found in Australia. These patterns are at odds with the supposition that Australian colonizers harboring N(xR) lineages used a route involving India as a stage. The most ancient N(xR) lineages in Eurasia are found in China, and inconsistently with the coastal route, N(xR) haplogroups with the southernmost geographical range have all more recent radiations than the Australians. Conclusions Apart from a single migration event via a southern route, phylogeny and phylogeography of N(xR) lineages support that people carrying mtDNA N lineages could have reach Australia following a northern route through Asia. Data from other disciplines also support this scenario.
Collapse
Affiliation(s)
- Rosa Fregel
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
- * E-mail:
| | - Vicente Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jose M. Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Khaled K. Abu-Amero
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ana M. González
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
13
|
Pugach I, Stoneking M. Genome-wide insights into the genetic history of human populations. INVESTIGATIVE GENETICS 2015; 6:6. [PMID: 25834724 PMCID: PMC4381409 DOI: 10.1186/s13323-015-0024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Although mtDNA and the non-recombining Y chromosome (NRY) studies continue to provide valuable insights into the genetic history of human populations, recent technical, methodological and computational advances and the increasing availability of large-scale, genome-wide data from contemporary human populations around the world promise to reveal new aspects, resolve finer points, and provide a more detailed look at our past demographic history. Genome-wide data are particularly useful for inferring migrations, admixture, and fine structure, as well as for estimating population divergence and admixture times and fluctuations in effective population sizes. In this review, we highlight some of the stories that have emerged from the analyses of genome-wide SNP genotyping data concerning the human history of Southern Africa, India, Oceania, Island South East Asia, Europe and the Americas and comment on possible future study directions. We also discuss advantages and drawbacks of using SNP-arrays, with a particular focus on the ascertainment bias, and ways to circumvent it.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| |
Collapse
|
14
|
Gomes SM, Bodner M, Souto L, Zimmermann B, Huber G, Strobl C, Röck AW, Achilli A, Olivieri A, Torroni A, Côrte-Real F, Parson W. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity. BMC Genomics 2015; 16:70. [PMID: 25757516 PMCID: PMC4342813 DOI: 10.1186/s12864-014-1201-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. RESULTS In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. CONCLUSIONS The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.
Collapse
Affiliation(s)
- Sibylle M Gomes
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Luis Souto
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
- Cencifor Centro de Ciências Forenses, Coimbra, Portugal.
| | - Bettina Zimmermann
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Alexander W Röck
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Perugia, Italy.
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
- Penn State Eberly College of Science, University Park, PA, USA.
| |
Collapse
|
15
|
Matisoo-Smith E. Ancient DNA and the human settlement of the Pacific: a review. J Hum Evol 2015; 79:93-104. [PMID: 25556846 DOI: 10.1016/j.jhevol.2014.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/01/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
The Pacific region provides unique opportunities to study human evolution including through analyses of ancient DNA. While some of the earliest studies involving ancient DNA from skeletal remains focused on Pacific samples, in the following 25 years, several factors meant that little aDNA research, particularly research focused on human populations, has emerged. This paper briefly presents the genetic evidence for population origins, reviews what ancient DNA work has been undertaken to address human history and evolution in the Pacific region, and argues that the future is bright but research requires a collaborative approach between academic disciplines but also with local communities.
Collapse
Affiliation(s)
- Elizabeth Matisoo-Smith
- Department of Anatomy and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| |
Collapse
|
16
|
McAllister P, Nagle N, Mitchell RJ. Brief communication: the Australian Barrineans and their relationship to Southeast Asian negritos: an investigation using mitochondrial genomics. Hum Biol 2013; 85:485-94. [PMID: 24297238 DOI: 10.3378/027.085.0322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/05/2022]
Abstract
The existence of a short-statured Aboriginal population in the Far North Queensland (FNQ) rainforest zone of Australia's northeast coast and Tasmania has long been an enigma in Australian anthropology. Based on their reduced stature and associated morphological traits such as tightly curled hair, Birdsell and Tindale proposed that these "Barrinean" peoples were closely related to "negrito" peoples of Southeast Asia and that their ancestors had been the original Pleistocene settlers of Sahul, eventually displaced by taller invaders. Subsequent craniometric and blood protein studies, however, have suggested an overall homogeneity of indigenous Australians, including Barrineans. To confirm this finding and determine the degree of relatedness between Barrinean people and Southeast Asian negritos, we compared indigenous Australian mitochondrial DNA (mtDNA) sequences in populations from the FNQ rainforest ecozone and Tasmania with sequences from other Australian Aboriginal populations and from Southeast Asian negrito populations (Philippines Batek and Mamanwa, and mainland Southeast Asian Jahai, Mendriq, and Batak). The results confirm that FNQ and Tasmanian mtDNA haplogroups cluster with those of other Australian Aboriginal populations and are only very distantly related to Southeast Asian negrito haplogroups.
Collapse
Affiliation(s)
- Peter McAllister
- PERAHU, School of Humanities, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | | | | |
Collapse
|
17
|
Abstract
The classical Mendelian genetic perspective has failed to adequately explain the biology and genetics of common metabolic and degenerative diseases. This is because these diseases are primarily systemic bioenergetic diseases, and the most important energy genes are located in the cytoplasmic mitochondrial DNA (mtDNA). Therefore, to understand these "complex" diseases, we must investigate their bioenergetic pathophysiology and consider the genetics of the thousands of copies of maternally inherited mtDNA, the more than 1,000 nuclear DNA (nDNA) bioenergetic genes, and the epigenomic and signal transduction systems that coordinate these dispersed elements of the mitochondrial genome.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4302, USA.
| |
Collapse
|
18
|
van Holst Pellekaan SM. Socially responsible genetic research with descendants of the First Australians. INVESTIGATIVE GENETICS 2012; 3:22. [PMID: 23151356 PMCID: PMC3528479 DOI: 10.1186/2041-2223-3-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/30/2012] [Indexed: 11/21/2022]
Abstract
Aboriginal Australians, one of the world’s indigenous peoples now outnumbered through colonization, are the most under-represented in genetic research because they feel that the benefits do not outweigh the social cost of involvement. Descendants of the First Australians have survived a period of European occupation during which time they were dispossessed of land, language and cultural identity resulting in inequities in health, education, and employment opportunities. Compared to Maori and Native American peoples, the ability to form organizations that help to control their affairs is very recent. The desire to control is understandably strong yet the ‘gate-keeping’ role of some organizations risks shifting the control away from smaller communities and has become increasingly politicized. In the past, research practices by Western scientists were poorly presented and have resulted in resistance to proposals that are perceived to have no beneficial outcomes for participants. In this age of advanced technological expertise in genetics, benefits to all humanity are clear to those carrying out research projects, yet not always to those being asked to participate, presenting extra challenges. Excellent guidelines for ethical conduct in research are available to assist researchers, prospective participants, and ethics committees or review boards that approve and monitor procedures. The essence of these guidelines are that research should be carried out with a spirit of integrity, respect, reciprocity, parity, recognition of survival and protection of social and cultural values, a need for control and shared responsibility. Specific Aboriginal organizations, with which researchers need to work to negotiate partnerships, vary within and between Australian states and will always expect Aboriginal personnel to be involved. People experienced in the consultation process are necessary as part of a team. By working patiently through lengthy negotiations with Aboriginal Australians, scientists can achieve valuable results, but failure to do so with respect and understanding will not yield hoped for outcomes. My own experience working with communities in the Darling River region of western New South Wales has been an enriching and rewarding one, with a long period of successful research lately delayed by increased expectation of monitoring and involvement at state level.
Collapse
Affiliation(s)
- Sheila M van Holst Pellekaan
- School of Biotechnology and Biomolecular Sciences D26, University of New South Wales, Kensington, New South Wales, 2052, Australia.
| |
Collapse
|
19
|
Andonov A, Coulthart MB, Pérez-Losada M, Crandall KA, Posada D, Padmore R, Giulivi A, Oger JJ, Peters AA, Dekaban GA. Insights into origins of Human T-cell Lymphotropic Virus Type 1 based on new strains from aboriginal people of Canada. INFECTION GENETICS AND EVOLUTION 2012; 12:1822-30. [PMID: 22921499 DOI: 10.1016/j.meegid.2012.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/31/2022]
Abstract
The causes of the worldwide distribution of Human T-cell Lymphotropic Virus Type 1 (HTLV-1) remain incompletely understood, with competing hypotheses regarding the number and timing of events leading to intercontinental spread on historical and prehistoric timescales. Ongoing discovery of this virus in aboriginal populations of Asia and the Americas has been the main source of evidence for the latter. We conducted molecular phylogenetic and dating analyses for 13 newly reported HTLV-1 strains from Canada. We analyzed two full-length proviral genomes from aboriginal residents of Nunavut (an autonomous territory in Northern Canada including most of the Canadian Arctic), 11 long-terminal-repeat (LTR) sequences from aboriginal residents of British Columbia's Pacific coast, and 2 LTR sequences from non-aboriginal Canadians. Phylogenetic analysis demonstrated a well-supported affinity between the two Nunavut strains and two East Asian strains, suggesting the presence of an Asian-American sublineage within the widespread "transcontinental" subgroup A clade of HTLV-1 Cosmopolitan subtype a. This putative sublineage was estimated to be 5400-11,900 years in age, consistent with a long-term presence of HTLV-1 in aboriginal populations of the Canadian Arctic. Phylogenetic affinities of the other 11 Canadian HTLV-1 aboriginal strains were diverse, strengthening earlier evidence for multiple incursions of this virus into coastal aboriginal populations of British Columbia. Our results are consistent with the hypothesis of ancient presence of HTLV-1 in aboriginal populations of North America.
Collapse
Affiliation(s)
- Anton Andonov
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, Canada R3E 3R2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rasmussen M, Guo X, Wang Y, Lohmueller KE, Rasmussen S, Albrechtsen A, Skotte L, Lindgreen S, Metspalu M, Jombart T, Kivisild T, Zhai W, Eriksson A, Manica A, Orlando L, De La Vega FM, Tridico S, Metspalu E, Nielsen K, Ávila-Arcos MC, Moreno-Mayar JV, Muller C, Dortch J, Gilbert MTP, Lund O, Wesolowska A, Karmin M, Weinert LA, Wang B, Li J, Tai S, Xiao F, Hanihara T, van Driem G, Jha AR, Ricaut FX, de Knijff P, Migliano AB, Romero IG, Kristiansen K, Lambert DM, Brunak S, Forster P, Brinkmann B, Nehlich O, Bunce M, Richards M, Gupta R, Bustamante CD, Krogh A, Foley RA, Lahr MM, Balloux F, Sicheritz-Pontén T, Villems R, Nielsen R, Wang J, Willerslev E. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 2011; 334:94-8. [PMID: 21940856 PMCID: PMC3991479 DOI: 10.1126/science.1211177] [Citation(s) in RCA: 359] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.
Collapse
Affiliation(s)
- Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Sino-Danish Genomics Center, BGI-Shenzhen, Shenzhen 518083, China, and University of Copenhagen, Denmark
| | - Xiaosen Guo
- Sino-Danish Genomics Center, BGI-Shenzhen, Shenzhen 518083, China, and University of Copenhagen, Denmark
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Wang
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirk E. Lohmueller
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Line Skotte
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stinus Lindgreen
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mait Metspalu
- Department of Evolutionary Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 510101 Tartu, Estonia
| | - Thibaut Jombart
- MRC Centre for Outbreak, Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London W2 1PG, UK
| | - Toomas Kivisild
- Leverhulme Centre for Human Evolutionary Studies, Department of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
| | - Weiwei Zhai
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 7 Beitucheng West Road, Chaoyang District, Beijing 100029, China
| | - Anders Eriksson
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Andrea Manica
- Evolutionary Ecology Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | | | - Silvana Tridico
- Ancient DNA Lab, School of Biological Sciences and Biotechnology, Murdoch University, Western Australia 6150, Australia
| | - Ene Metspalu
- Department of Evolutionary Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 510101 Tartu, Estonia
| | - Kasper Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - María C. Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - J. Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Avenida Universidad s/n Chamilpa 62210, Cuernavaca, Morelos, Mexico
| | - Craig Muller
- Goldfields Land and Sea Council Aboriginal Corporation, 14 Throssell Street, Kalgoorlie, Western Australia 6430, Australia
| | - Joe Dortch
- Archaeology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - M. Thomas P. Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Sino-Danish Genomics Center, BGI-Shenzhen, Shenzhen 518083, China, and University of Copenhagen, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Agata Wesolowska
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Monika Karmin
- Department of Evolutionary Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 510101 Tartu, Estonia
| | - Lucy A. Weinert
- MRC Centre for Outbreak, Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London W2 1PG, UK
| | - Bo Wang
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China
| | - Jun Li
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China
| | - Shuaishuai Tai
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China
| | - Fei Xiao
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China
| | - Tsunehiko Hanihara
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Japan
| | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, 3000 Bern 9, Switzerland
| | - Aashish R. Jha
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - François-Xavier Ricaut
- Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Université de Toulouse (Paul Sabatier)–CNRS UMR 5288, 31073 Toulouse Cedex 3, France
| | - Peter de Knijff
- Department of Human and Clinical Genetics, Postzone S5-P, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Andrea B Migliano
- Leverhulme Centre for Human Evolutionary Studies, Department of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
- Department of Anthropology, University College London, London WC1E 6BT, UK
| | | | - Karsten Kristiansen
- Sino-Danish Genomics Center, BGI-Shenzhen, Shenzhen 518083, China, and University of Copenhagen, Denmark
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David M. Lambert
- Griffith School of Environment and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
| | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Forster
- Murray Edwards College, University of Cambridge, Cambridge CB3 0DF, UK
- Institute for Forensic Genetics, D-48161 Münster, Germany
| | | | - Olaf Nehlich
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Michael Bunce
- Ancient DNA Lab, School of Biological Sciences and Biotechnology, Murdoch University, Western Australia 6150, Australia
| | - Michael Richards
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ramneek Gupta
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos D. Bustamante
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anders Krogh
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robert A. Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
| | - Marta M. Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
| | - Francois Balloux
- MRC Centre for Outbreak, Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London W2 1PG, UK
| | - Thomas Sicheritz-Pontén
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Richard Villems
- Department of Evolutionary Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 510101 Tartu, Estonia
- Estonian Academy of Sciences, 6 Kohtu Street, 10130 Tallinn, Estonia
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jun Wang
- Sino-Danish Genomics Center, BGI-Shenzhen, Shenzhen 518083, China, and University of Copenhagen, Denmark
- Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, and Department of Biology, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Sino-Danish Genomics Center, BGI-Shenzhen, Shenzhen 518083, China, and University of Copenhagen, Denmark
| |
Collapse
|
21
|
Ballantyne KN, van Oven M, Ralf A, Stoneking M, Mitchell RJ, van Oorschot RAH, Kayser M. MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania. Forensic Sci Int Genet 2011; 6:425-36. [PMID: 21940232 DOI: 10.1016/j.fsigen.2011.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/22/2023]
Abstract
Human mitochondrial DNA (mtDNA) is a convenient marker for tracing matrilineal bio-geographic ancestry and is widely applied in forensic, genealogical and anthropological studies. In forensic applications, DNA-based ancestry inference can be useful for finding unknown suspects by concentrating police investigations in cases where autosomal STR profiling was unable to provide a match, or can help provide clues in missing person identification. Although multiplexed mtDNA single nucleotide polymorphism (SNP) assays to infer matrilineal ancestry at a (near) continental level are already available, such tools are lacking for the Oceania region. Here, we have developed a hierarchical system of three SNaPshot multiplexes for genotyping 26 SNPs defining all major mtDNA haplogroups for Oceania (including Australia, Near Oceania and Remote Oceania). With this system, it was possible to conclusively assign 74% of Oceanian individuals to their Oceanian matrilineal ancestry in an established literature database (after correcting for obvious external admixture). Furthermore, in a set of 161 genotyped individuals collected in Australia, Papua New Guinea and Fiji, 87.6% were conclusively assigned an Oceanian matrilineal origin. For the remaining 12.4% of the genotyped samples either a Eurasian origin was detected indicating likely European admixture (1.9%), the identified haplogroups are shared between Oceania and S/SE-Asia (5%), or the SNPs applied did not allow a geographic inference to be assigned (5.6%). Sub-regional assignment within Oceania was possible for 32.9% of the individuals genotyped: 49.5% of Australians were assigned an Australian origin and 13.7% of the Papua New Guineans were assigned a Near Oceanian origin, although none of the Fijians could be assigned a specific Remote Oceanian origin. The low assignment rates of Near and Remote Oceania are explained by recent migrations from Asia via Near Oceania into Remote Oceania. Combining the mtDNA multiplexes for Oceania introduced here with those we developed earlier for all other continental regions, global matrilineal bio-geographic ancestry assignment from DNA is now achievable in a highly efficient way that is also suitable for applications with limited material such as forensic case work.
Collapse
Affiliation(s)
- Kaye N Ballantyne
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Beyin A. Upper Pleistocene Human Dispersals out of Africa: A Review of the Current State of the Debate. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:615094. [PMID: 21716744 PMCID: PMC3119552 DOI: 10.4061/2011/615094] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/22/2011] [Accepted: 02/24/2011] [Indexed: 12/31/2022]
Abstract
Although there is a general consensus on African origin of early modern humans, there is disagreement about how and when they dispersed to Eurasia. This paper reviews genetic and Middle Stone Age/Middle Paleolithic archaeological literature from northeast Africa, Arabia, and the Levant to assess the timing and geographic backgrounds of Upper Pleistocene human colonization of Eurasia. At the center of the discussion lies the question of whether eastern Africa alone was the source of Upper Pleistocene human dispersals into Eurasia or were there other loci of human expansions outside of Africa? The reviewed literature hints at two modes of early modern human colonization of Eurasia in the Upper Pleistocene: (i) from multiple Homo sapiens source populations that had entered Arabia, South Asia, and the Levant prior to and soon after the onset of the Last Interglacial (MIS-5), (ii) from a rapid dispersal out of East Africa via the Southern Route (across the Red Sea basin), dating to ~74–60 kya.
Collapse
Affiliation(s)
- Amanuel Beyin
- Turkana Basin Institute, Stony Brook University, SBS Building 5th Floor, Stony Brook, NY 11794, USA
| |
Collapse
|
23
|
Bulbeck D, O'Connor S. The Watinglo mandible: a second terminal Pleistocene Homo sapiens fossil from tropical Sahul with a test on existing models for the human settlement of the region. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2011; 62:1-29. [PMID: 21216399 DOI: 10.1016/j.jchb.2010.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/01/2010] [Indexed: 11/28/2022]
Abstract
This paper analyses a fossil human mandible, dated to circa 10ka, from Watinglo rockshelter on the north coast of Papua New Guinea. The fossil is metrically and morphologically similar to male mandibles of recent Melanesians and Australian Aborigines. It is distinguished from Kow Swamp and Coobool Creek male mandibles (Murray Valley, terminal Pleistocene) by being smaller and having different shape characteristics, as well as smaller teeth and a slower rate of tooth wear. It pairs with the Liang Lemdubu female (Late Glacial Maximum, Aru Islands) in suggesting that the morphology of the terminal Pleistocene inhabitants of tropical Sahul was gracile compared to their contemporaries within the southern Murray drainage. An explanatory scenario for this morphological contrast is developed in the context of the Homo sapiens early fossil record, Australasian mtDNA evidence, terminal Pleistocene climatic variation, and the possibility of multiple entry points into Sahul.
Collapse
Affiliation(s)
- D Bulbeck
- Department of Archaeology and Natural History, Research School of Pacific and Asian Studies, School of Culture, History and Language, The Australian National University, ACT 0200, Australia.
| | | |
Collapse
|
24
|
McEvoy BP, Lind JM, Wang ET, Moyzis RK, Visscher PM, van Holst Pellekaan SM, Wilton AN. Whole-genome genetic diversity in a sample of Australians with deep Aboriginal ancestry. Am J Hum Genet 2010; 87:297-305. [PMID: 20691402 DOI: 10.1016/j.ajhg.2010.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 12/19/2022] Open
Abstract
Australia was probably settled soon after modern humans left Africa, but details of this ancient migration are not well understood. Debate centers on whether the Pleistocene Sahul continent (composed of New Guinea, Australia, and Tasmania) was first settled by a single wave followed by regional divergence into Aboriginal Australian and New Guinean populations (common origin) or whether different parts of the continent were initially populated independently. Australia has been the subject of relatively few DNA studies even though understanding regional variation in genomic structure and diversity will be important if disease-association mapping methods are to be successfully evaluated and applied across populations. We report on a genome-wide investigation of Australian Aboriginal SNP diversity in a sample of participants from the Riverine region. The phylogenetic relationship of these Aboriginal Australians to a range of other global populations demonstrates a deep common origin with Papuan New Guineans and Melanesians, with little evidence of substantial later migration until the very recent arrival of European colonists. The study provides valuable and robust insights into an early and important phase of human colonization of the globe. A broader survey of Australia, including diverse geographic sample populations, will be required to fully appreciate the continent's unique population history and consequent genetic heritage, as well as the importance of both to the understanding of health issues.
Collapse
Affiliation(s)
- Brian P McEvoy
- Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The human history of Oceania is unique in the way that it encompasses both the first out-of-Africa expansion of modern humans to New Guinea and Australia as well as the last regional human occupation of Polynesia. Other anthropological peculiarities of Oceania include features like the extraordinarily rich linguistic diversity especially of New Guinea with about 1,000 often very distinct languages, the independent and early development of agriculture in the highlands of New Guinea about 10,000 years ago, or the long-term isolation of the entire region from the outside world, which lasted as long as until the 1930s for most of the interior of New Guinea. This review will provide an overview on the genetic aspects of human population history of Oceania and how some of the anthropological peculiarities are reflected in human genetic data. Due to current data availability it will mostly focus on insights from sex-specifically inherited mitochondrial DNA and Y-chromosomal DNA, whereas more genome-wide autosomal DNA data are soon expected to add additional details or may correct views obtained from these two, albeit highly complex, genetic loci.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
26
|
Cabrera VM, Abu-Amero KK, Larruga JM, González AM. The Arabian peninsula: Gate for Human Migrations Out of Africa or Cul-de-Sac? A Mitochondrial DNA Phylogeographic Perspective. THE EVOLUTION OF HUMAN POPULATIONS IN ARABIA 2010. [DOI: 10.1007/978-90-481-2719-1_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Kumar S, Ravuri RR, Koneru P, Urade BP, Sarkar BN, Chandrasekar A, Rao VR. Reconstructing Indian-Australian phylogenetic link. BMC Evol Biol 2009; 9:173. [PMID: 19624810 PMCID: PMC2720955 DOI: 10.1186/1471-2148-9-173] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 07/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background An early dispersal of biologically and behaviorally modern humans from their African origins to Australia, by at least 45 thousand years via southern Asia has been suggested by studies based on morphology, archaeology and genetics. However, mtDNA lineages sampled so far from south Asia, eastern Asia and Australasia show non-overlapping distributions of haplogroups within pan Eurasian M and N macrohaplogroups. Likewise, support from the archaeology is still ambiguous. Results In our completely sequenced 966-mitochondrial genomes from 26 relic tribes of India, we have identified seven genomes, which share two synonymous polymorphisms with the M42 haplogroup, which is specific to Australian Aborigines. Conclusion Our results showing a shared mtDNA lineage between Indians and Australian Aborigines provides direct genetic evidence of an early colonization of Australia through south Asia, following the "southern route".
Collapse
Affiliation(s)
- Satish Kumar
- Anthropological Survey of India, 27 Jawaharlal Nehru Road, Kolkata, India.
| | | | | | | | | | | | | |
Collapse
|
28
|
Soares P, Ermini L, Thomson N, Mormina M, Rito T, Röhl A, Salas A, Oppenheimer S, Macaulay V, Richards MB. Correcting for purifying selection: an improved human mitochondrial molecular clock. Am J Hum Genet 2009; 84:740-59. [PMID: 19500773 DOI: 10.1016/j.ajhg.2009.05.001] [Citation(s) in RCA: 487] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/20/2009] [Accepted: 05/01/2009] [Indexed: 11/15/2022] Open
Abstract
There is currently no calibration available for the whole human mtDNA genome, incorporating both coding and control regions. Furthermore, as several authors have pointed out recently, linear molecular clocks that incorporate selectable characters are in any case problematic. We here confirm a modest effect of purifying selection on the mtDNA coding region and propose an improved molecular clock for dating human mtDNA, based on a worldwide phylogeny of > 2000 complete mtDNA genomes and calibrating against recent evidence for the divergence time of humans and chimpanzees. We focus on a time-dependent mutation rate based on the entire mtDNA genome and supported by a neutral clock based on synonymous mutations alone. We show that the corrected rate is further corroborated by archaeological dating for the settlement of the Canary Islands and Remote Oceania and also, given certain phylogeographic assumptions, by the timing of the first modern human settlement of Europe and resettlement after the Last Glacial Maximum. The corrected rate yields an age of modern human expansion in the Americas at approximately 15 kya that-unlike the uncorrected clock-matches the archaeological evidence, but continues to indicate an out-of-Africa dispersal at around 55-70 kya, 5-20 ky before any clear archaeological record, suggesting the need for archaeological research efforts focusing on this time window. We also present improved rates for the mtDNA control region, and the first comprehensive estimates of positional mutation rates for human mtDNA, which are essential for defining mutation models in phylogenetic analyses.
Collapse
Affiliation(s)
- Pedro Soares
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Henn BM, Gignoux CR, Feldman MW, Mountain JL. Characterizing the time dependency of human mitochondrial DNA mutation rate estimates. Mol Biol Evol 2008; 26:217-30. [PMID: 18984905 DOI: 10.1093/molbev/msn244] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous research has established a discrepancy of nearly an order of magnitude between pedigree-based and phylogeny-based (human vs. chimpanzee) estimates of the mitochondrial DNA (mtDNA) control region mutation rate. We characterize the time dependency of the human mitochondrial hypervariable region one mutation rate by generating 14 new phylogeny-based mutation rate estimates using within-human comparisons and archaeological dates. Rate estimates based on population events between 15,000 and 50,000 years ago are at least 2-fold lower than pedigree-based estimates. These within-human estimates are also higher than estimates generated from phylogeny-based human-chimpanzee comparisons. Our new estimates establish a rapid decay in evolutionary mutation rate between approximately 2,500 and 50,000 years ago and a slow decay from 50,000 to 6 Ma. We then extend this analysis to the mtDNA-coding region. Our within-human coding region mutation rate estimates display a similar, though less rapid, time-dependent decay. We explore the possibility that multiple hits explain the discrepancy between pedigree-based and phylogeny-based mutation rates. We conclude that whereas nucleotide substitution models incorporating multiple hits do provide a possible explanation for the discrepancy between pedigree-based and human-chimpanzee mutation rate estimates, they do not explain the rapid decline of within-human rate estimates. We propose that demographic processes such as serial bottlenecks prior to the Holocene could explain the difference between rates estimated before and after 15,000 years ago. Our findings suggest that human mtDNA estimates of dates of population and phylogenetic events should be adjusted in light of this time dependency of the mutation rate estimates.
Collapse
Affiliation(s)
- Brenna M Henn
- Department of Anthropology, Stanford University, USA.
| | | | | | | |
Collapse
|
30
|
Santos C, Montiel R, Arruda A, Alvarez L, Aluja MP, Lima M. Mutation patterns of mtDNA: empirical inferences for the coding region. BMC Evol Biol 2008; 8:167. [PMID: 18518963 PMCID: PMC2438339 DOI: 10.1186/1471-2148-8-167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 06/02/2008] [Indexed: 01/22/2023] Open
Abstract
Background Human mitochondrial DNA (mtDNA) has been extensively used in population and evolutionary genetics studies. Thus, a valid estimate of human mtDNA evolutionary rate is important in many research fields. The small number of estimations performed for the coding region of the molecule, showed important differences between phylogenetic and empirical approaches. We analyzed a portion of the coding region of mtDNA (tRNALeu, ND1 and tRNAIle genes), using individuals belonging to extended families from the Azores Islands (Portugal) with the main aim of providing empirical estimations of the mutation rate of the coding region of mtDNA under different assumptions, and hence to better understand the mtDNA evolutionary process. Results Heteroplasmy was detected in 6.5% (3/46) of the families analyzed. In all of the families the presence of mtDNA heteroplasmy resulted from three new point mutations, and no cases of insertions or deletions were identified. Major differences were found in the proportion and type of heteroplasmy found in the genes studied when compared to those obtained in a previous report for the D-loop. Our empirical estimation of mtDNA coding region mutation rate, calculated taking into account the sex of individuals carrying new mutations, the probability of intra-individual fixation of mutations present in heteroplasmy and, to the possible extent, the effect of selection, is similar to that obtained using phylogenetic approaches. Conclusion Based on our results, the discrepancy previously reported between the human mtDNA coding region mutation rates observed along evolutionary timescales and estimations obtained using family pedigrees can be resolved when correcting for the previously cited factors.
Collapse
Affiliation(s)
- Cristina Santos
- Center for Research in Natural Resources (CIRN), University of the Azores, 9500 Ponta Delgada, S, Miguel, Azores, Portugal.
| | | | | | | | | | | |
Collapse
|
31
|
Habgood PJ, Franklin NR. The revolution that didn't arrive: A review of Pleistocene Sahul. J Hum Evol 2008; 55:187-222. [PMID: 18485448 DOI: 10.1016/j.jhevol.2007.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 06/12/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
There is a "package" of cultural innovations that are claimed to reflect modern human behaviour. The introduction of the "package" has been associated with the Middle-to-Upper Palaeolithic transition and the appearance in Europe of modern humans. It has been proposed that modern humans spread from Africa with the "package" and colonised not only Europe but also southern Asia and Australia (McBrearty and Brooks, 2000; Mellars, 2006a). In order to evaluate this proposal, we explore the late Pleistocene archaeological record of Sahul, the combined landmass of Australia and Papua New Guinea, for indications of these cultural innovations at the earliest sites. It was found that following initial occupation of the continent by anatomically and behaviourally modern humans, the components were gradually assembled over a 30,000-year period. We discount the idea that the "package" was lost en route to Sahul and assess the possibility that the "package" was not integrated within the material culture of the initial colonising groups because they may not have been part of a rapid colonisation process from Africa. As the cultural innovations appear at different times and locations within Sahul, the proposed "package" of archaeologically visible traits cannot be used to establish modern human behaviour. Whilst the potential causal role of increasing population densities/pressure in the appearance of the "package" of modern human behaviour in the archaeological record is acknowledged, it is not seen as the sole explanation because the individual components of the "package" appear at sites that are widely separated in space and time.
Collapse
Affiliation(s)
- Phillip J Habgood
- School of Social Science, University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
32
|
Human cranial diversity and evidence for an ancient lineage of modern humans. J Hum Evol 2008; 54:814-26. [PMID: 18164370 DOI: 10.1016/j.jhevol.2007.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 10/20/2007] [Accepted: 10/31/2007] [Indexed: 11/22/2022]
Abstract
This study examines the genetic affinities of various modern human groupings using a multivariate analysis of morphometric data. Phylogenetic relationships among these groupings are also explored using neighbor-joining analysis of the metric data. Results indicate that the terminal Pleistocene/early Holocene fossils from Australasia exhibit a close genetic affinity with early modern humans from the Levant. Furthermore, recent human populations and Upper Paleolithic Europeans share a most recent common ancestor not shared with either the early Australasians or the early Levantine humans. This pattern of genetic and phylogenetic relationships suggests that the early modern humans from the Levant either contributed directly to the ancestry of an early lineage of Australasians, or that they share a recent common ancestor with them. The principal findings of the study, therefore, lend support to the notion of an early dispersal from Africa by a more ancient lineage of modern human prior to 50 ka, perhaps as early as OIS 5 times (76-100 ka).
Collapse
|
33
|
Mitochondrial DNA structure in the Arabian Peninsula. BMC Evol Biol 2008; 8:45. [PMID: 18269758 PMCID: PMC2268671 DOI: 10.1186/1471-2148-8-45] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 02/12/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two potential migratory routes followed by modern humans to colonize Eurasia from Africa have been proposed. These are the two natural passageways that connect both continents: the northern route through the Sinai Peninsula and the southern route across the Bab al Mandab strait. Recent archaeological and genetic evidence have favored a unique southern coastal route. Under this scenario, the study of the population genetic structure of the Arabian Peninsula, the first step out of Africa, to search for primary genetic links between Africa and Eurasia, is crucial. The haploid and maternally inherited mitochondrial DNA (mtDNA) molecule has been the most used genetic marker to identify and to relate lineages with clear geographic origins, as the African Ls and the Eurasian M and N that have a common root with the Africans L3. RESULTS To assess the role of the Arabian Peninsula in the southern route, we genetically analyzed 553 Saudi Arabs using partial (546) and complete mtDNA (7) sequencing, and compared the lineages obtained with those present in Africa, the Near East, central, east and southeast Asia and Australasia. The results showed that the Arabian Peninsula has received substantial gene flow from Africa (20%), detected by the presence of L, M1 and U6 lineages; that an 18% of the Arabian Peninsula lineages have a clear eastern provenance, mainly represented by U lineages; but also by Indian M lineages and rare M links with Central Asia, Indonesia and even Australia. However, the bulk (62%) of the Arabian lineages has a Northern source. CONCLUSION Although there is evidence of Neolithic and more recent expansions in the Arabian Peninsula, mainly detected by (preHV)1 and J1b lineages, the lack of primitive autochthonous M and N sequences, suggests that this area has been more a receptor of human migrations, including historic ones, from Africa, India, Indonesia and even Australia, than a demographic expansion center along the proposed southern coastal route.
Collapse
|
34
|
Wells JCK, Stock JT. The biology of the colonizing ape. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:191-222. [PMID: 18046751 DOI: 10.1002/ajpa.20735] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hominin evolutionary history is characterized by regular dispersals, cycles of colonization, and entry into novel environments. This article considers the relationship between such colonizing capacity and hominin biology. In general, colonizing strategy favors rapid rates of reproduction and generalized rather than specialized biology. Physiological viability across diverse environments favors a high degree of phenotypic plasticity, which buffers the genome from selective pressures. Colonizing also favors the capacity to access and process information about environmental variability. We propose that early hominin adaptive radiations were based upon the development of such capacities as adaptations to unstable Pliocene environments. These components came together, along with fundamental changes in morphology, behavior, and cognition in the genus Homo, who exploited them in subsequent wider dispersals. Middle Pleistocene hominins and modern humans also show development of further traits, which correspond with successful probing of, and dispersals into, stressful environments. These traits have their precursors in primate or ape biology, but have become more pronounced during hominin evolution. First, short interbirth intervals and slow childhood growth allow human females to provision several offspring simultaneously, increasing the rate of reproduction in favorable conditions. This allows rapid recovery from population crashes, or rapid population growth in new habitats. Second, despite high geographical phenotypic variability, humans have high genetic unity. This is achieved by a variety of levels of plasticity, including physiology, behavior, and technology, which reduce the need to commit to genetic adaptation. Hominin behavior may increasingly have shaped both the ecological niches occupied and the selective pressures acting back on the genome. Such selective pressures may have been exacerbated by population dynamics, predicted to both derive from, and favor, the colonizing strategy. Exposure to ecological variability is likely to have generated particular selective pressures on female biology, favoring increasing steering of offspring ontogeny by maternal phenotype. We propose that the concept of hominins as "colonizing apes" offers a novel unified model for interpreting the suite of traits characteristic of our genus.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, Institute of Child Health, London WC1N 1EH, UK.
| | | |
Collapse
|
35
|
Underhill PA, Kivisild T. Use of Y Chromosome and Mitochondrial DNA Population Structure in Tracing Human Migrations. Annu Rev Genet 2007; 41:539-64. [PMID: 18076332 DOI: 10.1146/annurev.genet.41.110306.130407] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120;
| | - Toomas Kivisild
- Leverhulme Center of Human Evolutionary Studies, University of Cambridge, Cambridge CB2 1QH, United Kingdom;
| |
Collapse
|
36
|
Alfonso-Sánchez MA, Pérez-Miranda AM, Herrera RJ. Autosomal microsatellite variability of the Arrernte people of Australia. Am J Hum Biol 2007; 20:91-9. [PMID: 17957762 DOI: 10.1002/ajhb.20685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genomic diversity of the Arrernte people of Australia or caterpillar people was investigated utilizing 13 autosomal short tandem repeat (STR) markers. Significant departures from Hardy-Weinberg equilibrium were detected at the D18S51, TPOX and CSF1PO loci, which persisted after applying the Bonferroni correction. Gene diversity values oscillate between 0.6302 (CSF1PO) and 0.8731 (D21S11). Observed heterozygosity (Ho) ranges from 0.2632 (D18S51) to 0.8333 (vWA) and is lower than the expected heterozygosity (He) for 12 of the 13 loci analyzed. The genetic relationships of the Arrernte with Middle Eastern, East Asian, South Asian and Indian populations were analyzed by distance-based methods, including Neighbor-Joining trees and nonmetric multidimensional scaling. In addition, the genetic contribution of the populations included in the analysis to the Arrernte gene pool was estimated utilizing weighted least square coefficients. Although the Arrernte population exhibits a remarkable level of genetic differentiation, results of the phylogeographic analyses based on autosomal microsatellite data suggest a certain degree of genetic relatedness between the Arrernte tribe of Australia and populations from the Indian subcontinent. In contrast, the STR diversity analyses failed to detect substantial East Asian contribution to the genetic background of the Arrernte group.
Collapse
Affiliation(s)
- M A Alfonso-Sánchez
- Molecular Biology and Human Diversity Laboratory, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | | | | |
Collapse
|
37
|
Walsh SJ, Mitchell RJ, Watson N, Buckleton JS. A comprehensive analysis of microsatellite diversity in Aboriginal Australians. J Hum Genet 2007; 52:712-728. [PMID: 17628738 DOI: 10.1007/s10038-007-0172-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Indigenous Australians have a unique evolutionary history that has resulted in a complex system of inter and intra-tribal relationships. While a number of studies have examined the population genetics of indigenous Australians, most have used a single sample to illuminate details of the global dispersal of modern humans and few studies have focussed on the population genetic features of the widely dispersed communities of the indigenous population. In this study we examine the largest Aboriginal Australian sample yet analysed (N = 8,868) at fifteen hypervariable autosomal microsatellite loci. A comprehensive analysis of differentiation indicates different levels of heterogeneity among indigenous peoples from traditional regions of Aboriginal Australia. The most genetically differentiated populations inhabit the North of the country, in particular the Tiwi of Melville and Bathurst islands, Arnhem Land (itself divided into West and East Arnhem), and Fitzmaurice regions. These tribal groups are most differentiated from other Aboriginal Australian tribes, especially those of the Central Desert regions, and also show marked heterogeneity from one another. These genetic findings are supportive of observations of body measurements, skin colour, and dermatoglyphic features which also vary substantially between tribes of the North (e.g. Arnhem Land) and Central Australian regions and, more specifically, between the Tiwi and West and East Arnhem tribes. This study provides the most comprehensive survey of the population genetics of Aboriginal Australia.
Collapse
Affiliation(s)
- Simon J Walsh
- Forensic and Technical Services, Australian Federal Police, GPO Box 401, Canberra, ACT, 2601, Australia.
- Centre for Forensic Science, UTS, PO Box 123, Broadway, NSW, 2007, Australia.
| | - R John Mitchell
- Department of Human Genetics, LaTrobe University, Melbourne, Australia
| | | | | |
Collapse
|
38
|
Hudjashov G, Kivisild T, Underhill PA, Endicott P, Sanchez JJ, Lin AA, Shen P, Oefner P, Renfrew C, Villems R, Forster P. Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. Proc Natl Acad Sci U S A 2007; 104:8726-30. [PMID: 17496137 PMCID: PMC1885570 DOI: 10.1073/pnas.0702928104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Published and new samples of Aboriginal Australians and Melanesians were analyzed for mtDNA (n=172) and Y variation (n=522), and the resulting profiles were compared with the branches known so far within the global mtDNA and the Y chromosome tree. (i) All Australian lineages are confirmed to fall within the mitochondrial founder branches M and N and the Y chromosomal founders C and F, which are associated with the exodus of modern humans from Africa approximately 50-70,000 years ago. The analysis reveals no evidence for any archaic maternal or paternal lineages in Australians, despite some suggestively robust features in the Australian fossil record, thus weakening the argument for continuity with any earlier Homo erectus populations in Southeast Asia. (ii) The tree of complete mtDNA sequences shows that Aboriginal Australians are most closely related to the autochthonous populations of New Guinea/Melanesia, indicating that prehistoric Australia and New Guinea were occupied initially by one and the same Palaeolithic colonization event approximately 50,000 years ago, in agreement with current archaeological evidence. (iii) The deep mtDNA and Y chromosomal branching patterns between Australia and most other populations around the Indian Ocean point to a considerable isolation after the initial arrival. (iv) We detect only minor secondary gene flow into Australia, and this could have taken place before the land bridge between Australia and New Guinea was submerged approximately 8,000 years ago, thus calling into question that certain significant developments in later Australian prehistory (the emergence of a backed-blade lithic industry, and the linguistic dichotomy) were externally motivated.
Collapse
Affiliation(s)
- Georgi Hudjashov
- Estonian Biocentre and Tartu University, Department of Evolutionary Biology, Riia 23, 51010 Tartu, Estonia
| | - Toomas Kivisild
- Estonian Biocentre and Tartu University, Department of Evolutionary Biology, Riia 23, 51010 Tartu, Estonia
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge CB2 1QH, United Kingdom
- To whom correspondence may be addressed. E-mail: or
| | - Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120
| | - Phillip Endicott
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Juan J. Sanchez
- National Institute of Toxicology and Forensic Science, Canary Islands Delegation, Campus de Ciencias de la Salud, 38320 La Laguna, Tenerife, Spain
| | - Alice A. Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120
| | - Peidong Shen
- Stanford Genome Technology Center, Palo Alto, CA 94304
| | - Peter Oefner
- Institute of Functional Genomics, University of Regensburg, Josef-Engert-Strasse 9, 93053 Regensburg, Germany
| | - Colin Renfrew
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, United Kingdom; and
- To whom correspondence may be addressed. E-mail: or
| | - Richard Villems
- Estonian Biocentre and Tartu University, Department of Evolutionary Biology, Riia 23, 51010 Tartu, Estonia
| | - Peter Forster
- Department of Forensic Science and Chemistry, Faculty of Science and Technology, Anglia Ruskin University, East Road, Cambridge CB1 1PT, United Kingdom
| |
Collapse
|
39
|
Abstract
With the recent increase in the available number of high-quality, full-length mitochondrial sequences, it is now possible to construct and analyze a comprehensive human mitochondrial consensus sequence. Using a data set of 827 carefully selected sequences, it is shown that modern humans contain extremely low levels of divergence from the mitochondrial consensus sequence, differing by a mere 21.6 nt sites on average. Fully 84.1% of the mitochondrial genome was found to be invariant and ‘private’ mutations accounted for 43.8% of the variable sites. Ninety eight percent of the variant sites had a primary nucleotide with an allele frequency of 0.90 or greater. Interestingly, the few truly ambiguous nucleotide sites could all be reliably assigned to either a purine or pyrimidine ancestral state. A comparison of this consensus sequence to several ancestral sequences derived from phylogenetic studies reveals a great deal of similarity, where, as expected, the most phylogenetically informative nucleotides in the ancestral studies tended to be the most variable nucleotides in the consensus. Allowing for this fact, the consensus approach provides variation data on the positions that do not contribute to phylogenetic reconstructions, and these data provide a baseline for measuring human mitochondrial variation in populations worldwide.
Collapse
Affiliation(s)
- Robert W Carter
- FMS Foundation, 7160 Stone Hill Rd., Livonia, NY 14487, USA.
| |
Collapse
|
40
|
|
41
|
Friedlaender JS, Friedlaender FR, Hodgson JA, Stoltz M, Koki G, Horvat G, Zhadanov S, Schurr TG, Merriwether DA. Melanesian mtDNA complexity. PLoS One 2007; 2:e248. [PMID: 17327912 PMCID: PMC1803017 DOI: 10.1371/journal.pone.0000248] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 02/05/2007] [Indexed: 12/02/2022] Open
Abstract
Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved.
Collapse
Affiliation(s)
- Jonathan S Friedlaender
- Anthropology Department, Temple University, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|