1
|
Brachetta-Aporta N, Gonzalez PN, Bernal V. Association between shape changes and bone remodeling patterns in the middle face during ontogeny in South American populations. Anat Rec (Hoboken) 2021; 305:156-169. [PMID: 33844463 DOI: 10.1002/ar.24640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/10/2022]
Abstract
The morphology of facial bones is modeled by processes of bone formation and resorption induced by interactions between tissues and compensatory responses. However, the role of remodeling patterns on the morphological changes within and among populations has been scarcely explored. Here, we assess the association between facial shape and the underlying bone cell activity throughout the ontogeny in two Amerindian populations that represent the extremes of craniofacial variation in South America. The sample comprises 71 individuals (36 adults and 35 subadults) representing hunter-gatherers from Patagonia and horticulturists from Northwest Argentina. We analyzed the shape and size of the zygomatic and the maxilla, and compared them with the patterns of bone formation and resorption. Bone formation and resorption were described by quantitative histological analysis of bone surfaces. Morphological changes were described by landmarks and semilandmarks digitized on 3D surfaces obtained from CT images. The results from multivariate statistics analysis show that the patterns of bone remodeling are associated with variation in the morphology of the middle face. We found a similar pattern of facial shape variation along the ontogenetic trajectory in the two samples, and a similar trend in the amount of formation and resorption activities across ages. The main differences between samples were found in the distribution of the areas of bone formation and resorption, possibly associated with mechanical bone response to masticatory loading. These findings provide clues about the processes and mechanisms of bone development involved in the facial morphological differentiation in human populations from southern South America.
Collapse
Affiliation(s)
- Natalia Brachetta-Aporta
- IIPG, Instituto de Investigaciones en Paleobiología y Geología, Río Negro, Argentina.,UNRN, Universidad Nacional de Río Negro. CONICET, Río Negro, Argentina
| | - Paula N Gonzalez
- ENyS. Estudios en Neurociencias y Sistemas Complejos, Buenos Aires, Argentina
| | - Valeria Bernal
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. CONICET, La Plata, Argentina
| |
Collapse
|
2
|
Schuh A, Kupczik K, Gunz P, Hublin J, Freidline SE. Ontogeny of the human maxilla: a study of intra-population variability combining surface bone histology and geometric morphometrics. J Anat 2019; 235:233-245. [PMID: 31070788 PMCID: PMC6637443 DOI: 10.1111/joa.13002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2019] [Indexed: 01/21/2023] Open
Abstract
Bone modeling is the process by which bone grows in size and models its shape via the cellular activities of the osteoblasts and osteoclasts that respectively form and remove bone. The patterns of expression of these two activities, visible on bone surfaces, are poorly understood during facial ontogeny in Homo sapiens; this is due mainly to small sample sizes and a lack of quantitative data. Furthermore, how microscopic activities are related to the development of morphological features, like the uniquely human-canine fossa, has been rarely explored. We developed novel techniques for quantifying and visualizing variability in bone modeling patterns and applied these methods to the human maxilla to better understand its development at the micro- and macroscopic levels. We used a cross-sectional ontogenetic series of 47 skulls of known calendar age, ranging from birth to 12 years, from a population of European ancestry. Surface histology was employed to record and quantify formation and resorption on the maxilla, and digital maps representing each individual's bone modeling patterns were created. Semilandmark geometric morphometric (GM) methods and multivariate statistics were used to analyze facial growth. Our results demonstrate that surface histology and GM methods give complementary results, and can be used as an integrative approach in ontogenetic studies. The bone modeling patterns specific to our sample are expressed early in ontogeny, and fairly constant through time. Bone resorption varies in the size of its fields, but not in location. Consequently, absence of bone resorption in extinct species with small sample sizes should be interpreted with caution. At the macroscopic level, maxillary growth is predominant in the top half of the bone where bone formation is mostly present. Our results suggest that maxillary growth in humans is highly constrained from early stages in ontogeny, and morphological changes are likely driven by changes in osteoblastic and osteoclastic rates of expression rather than differences in the bone modeling patterns (i.e. changes in location of formation and resorption). Finally, the results of the micro- and macroscopic analyses suggest that the development of the canine fossa results from a combination of bone resorption and bone growth in the surrounding region.
Collapse
Affiliation(s)
- Alexandra Schuh
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and AnthropologyMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Philipp Gunz
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Jean‐Jacques Hublin
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Sarah E. Freidline
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
3
|
Brachetta‐Aporta N, Gonzalez PN, Bernal V. Variation in facial bone growth remodeling in prehistoric populations from southern South America. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:422-434. [DOI: 10.1002/ajpa.23857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Natalia Brachetta‐Aporta
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
| | - Paula N. Gonzalez
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET‐HEC‐UNAJ) Buenos Aires Argentina
| | - Valeria Bernal
- Facultad de Ciencias Naturales y Museo, División AntropologíaUniversidad Nacional de La Plata, CONICET La Plata Argentina
| |
Collapse
|
4
|
Brachetta-Aporta N, Gonzalez PN, Bernal V. Integrating data on bone modeling and morphological ontogenetic changes of the maxilla in modern humans. Ann Anat 2019; 222:12-20. [DOI: 10.1016/j.aanat.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
|
5
|
Martisius NL, Sidéra I, Grote MN, Steele TE, McPherron SP, Schulz-Kornas E. Time wears on: Assessing how bone wears using 3D surface texture analysis. PLoS One 2018; 13:e0206078. [PMID: 30403706 PMCID: PMC6221309 DOI: 10.1371/journal.pone.0206078] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
Use-wear analysis provides a means of studying traces produced on animal bone during manufacture and use in an effort to reconstruct these processes. Often, these analyses are qualitative and based on experience and expertise. Previous studies have focused on interpreting final traces, but little is known about how these traces develop and change over time. We propose the use of an innovative quantitative method for studying bone surface traces that aims to reduce any unreliable or non-replicable results that can confound more traditional qualitative analyses. We seek to understand the basics of use-wear formation over Time by taking incremental molds of bone specimens subjected to a controlled, mechanical experiment. This study assesses how bone wears during extended use on three Material types (fresh skin, processed leather, or dry bark), from three initial Manufacturing states (unworked, ground with sandstone, or scraped with flint). With data obtained from a confocal disc-scanning microscope, we then apply 3D surface texture analysis using ISO 25178 parameters: surface roughness [Sa], autocorrelation length [Sal], peak curvature [Spc], and upper material ratio [Smr1]. We employ a multilevel multivariate Bayesian model to explain parameter variation under experimental conditions. Our findings show how duration of use strongly affects the transformation of the bone’s surface. Unworked bone is completely distinguishable from bone used for long time intervals and those modified by scraping. Interestingly, material wear does not often produce type-specific traces, but does affect the rate of bone alteration and how it is transformed. Specifically, fresh skin transforms bone at a faster rate than other materials. This novel quantitative and experimental approach enhances our understanding of the use of bone as a raw material for making and using tools and provides a foundation for future exploration of archaeological materials and questions.
Collapse
Affiliation(s)
- Naomi L. Martisius
- Department of Anthropology, University of California Davis, Davis, CA, United States of America
- * E-mail:
| | - Isabelle Sidéra
- Maison Archéologie et Ethnologie René-Ginouvès, Centre National de la Recherche Scientifique, Université Paris Ouest Nanterre, Nanterre, France
| | - Mark N. Grote
- Department of Anthropology, University of California Davis, Davis, CA, United States of America
| | - Teresa E. Steele
- Department of Anthropology, University of California Davis, Davis, CA, United States of America
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Shannon P. McPherron
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ellen Schulz-Kornas
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
6
|
Martínez-Vargas J, Muñoz-Muñoz F, López-Fuster MJ, Cubo J, Ventura J. Multimethod Approach to the Early Postnatal Growth of the Mandible in Mice from a Zone of Robertsonian Polymorphism. Anat Rec (Hoboken) 2018; 301:1360-1381. [PMID: 29669189 DOI: 10.1002/ar.23835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/11/2022]
Abstract
The western European house mouse (Mus musculus domesticus) shows high karyotypic diversity owing to Robertsonian translocations. Morphometric studies conducted with adult mice suggest that karyotype evolution due to these chromosomal reorganizations entails variation in the form and the patterns of morphological covariation of the mandible. However, information is much scarcer regarding the effect of these rearrangements on the growth pattern of the mouse mandible over early postnatal ontogeny. Here we compare mandible growth from the second to the eighth week of postnatal life between two ontogenetic series of mice from wild populations, with the standard karyotype and with Robertsonian translocations respectively, reared under the same conditions. A multi-method approach is used, including bone histology analyses of mandible surfaces and cross-sections, as well as geometric morphometric analyses of mandible form. The mandibles of both standard and Robertsonian mice display growth acceleration around weaning, anteroposterior direction of bone maturation, a predominance of bone deposition fields over ontogeny, and relatively greater expansion of the posterior mandible region correlated with the ontogenetic increase in mandible size. Nevertheless, differences exist between the two mouse groups regarding the timing of histological maturation of the mandible, the localization of certain bone remodeling fields, the temporospatial patterns of morphological variation, and the organization into two main modules. The dissimilarities in the process of mandible growth between the two groups of mice become more evident around sexual maturity, and could arise from alterations that Robertsonian translocations may exert on genes involved in the bone remodeling mechanism. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - María José López-Fuster
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Jorge Cubo
- Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, F-75005 Paris, France
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
7
|
Rosas A, Ríos L, Estalrrich A, Liversidge H, García-Tabernero A, Huguet R, Cardoso H, Bastir M, Lalueza-Fox C, de la Rasilla M, Dean C. The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain). Science 2018; 357:1282-1287. [PMID: 28935804 DOI: 10.1126/science.aan6463] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/27/2017] [Indexed: 11/02/2022]
Abstract
Ontogenetic studies help us understand the processes of evolutionary change. Previous studies on Neandertals have focused mainly on dental development and inferred an accelerated pace of general growth. We report on a juvenile partial skeleton (El Sidrón J1) preserving cranio-dental and postcranial remains. We used dental histology to estimate the age at death to be 7.7 years. Maturation of most elements fell within the expected range of modern humans at this age. The exceptions were the atlas and mid-thoracic vertebrae, which remained at the 5- to 6-year stage of development. Furthermore, endocranial features suggest that brain growth was not yet completed. The vertebral maturation pattern and extended brain growth most likely reflect Neandertal physiology and ontogenetic energy constraints rather than any fundamental difference in the overall pace of growth in this extinct human.
Collapse
Affiliation(s)
- Antonio Rosas
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN)-Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Luis Ríos
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN)-Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain.,Department of Physical Anthropology, Aranzadi Society of Sciences, Zorroagagaina 11, 20014 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Almudena Estalrrich
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN)-Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain.,Department of Paleoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Franckfurta, Germany
| | - Helen Liversidge
- Queen Mary University of London, Institute of Dentistry, Turner Street, London E1 2AD, UK
| | - Antonio García-Tabernero
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN)-Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Rosa Huguet
- Institut Català de Paleoecologia Humana i Evolució Social-Unidad Asociada al CSIC, Campus Sescelades (Edifici W3), Universitat Rovira i Virgili, Carrer Marcel.lí Domingo s/n, 43007 Tarragona, Spain
| | - Hugo Cardoso
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Markus Bastir
- Paleoanthropology Group, Department of Paleobiology, Museo Nacional de Ciencias Naturales (MNCN)-Consejo Superior de Investigaciones Científicas (CSIC), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marco de la Rasilla
- Área de Prehistoria Departamento de Historia, Universidad de Oviedo, Calle Teniente Alfonso Martínez s/n, 33011 Oviedo, Spain
| | - Christopher Dean
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Watanabe J. Ontogeny of Surface Texture of Limb Bones in Modern Aquatic Birds and Applicability of Textural Ageing. Anat Rec (Hoboken) 2018; 301:1026-1045. [PMID: 29195009 DOI: 10.1002/ar.23736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 01/19/2023]
Abstract
Despite its importance in various disciplines, a general method to assess ontogenetic ages of skeletal and fossil specimens has been lacking for birds. Although the textural ageing method was formulated to assess relative ontogenetic ages of specimens from inspection of bone surface textures, the exact correspondence of surface textures to ontogenetic stages has not yet been clear. In this study, bone surface textures of six major limb bones (humerus, ulna, carpometacarpus, femur, tibiotarsus, and tarsometatarsus) were described in postnatal ontogenies of four species of modern birds (Calonectris leucomelas, Phalacrocorax capillatus, Larus crassirostris, and Cerorhinca monocerata) from 14 to 28 individuals of known ontogenetic stages for each species. Consistently with the previous postulation, it was found that bones of chicks were characterized by rough surface textures with numerous grooves/depressions that host minute foramina. Bones of fledglings/juveniles, which are generally as large as those of adults but more slender, were characterized by the occasional presence of depressions and foramina. Histological observations confirmed that these rough surface textures were underlain by fibrolamellar bone tissue which is associated with active periosteal ossification. These results indicate that the smooth surface texture in adults is formed after the cessation of circumferential bone growth, which probably takes place between fledging and the attainment of sexual maturity. The available evidence suggests that the textural ageing is probably applicable to the entire Neognathae, a clade containing most crown-group birds. Anat Rec, 301:1026-1045, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Sakyoku Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Brachetta-Aporta N, Gonzalez PN, Bernal V. A quantitative approach for analysing bone modelling patterns from craniofacial surfaces in hominins. J Anat 2017; 232:3-14. [PMID: 29071711 DOI: 10.1111/joa.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 11/28/2022] Open
Abstract
Bone size and shape arise throughout ontogeny as a result of the coordinated activity of osteoblasts and osteoclasts, responsible for bone deposition and resorption, and growth displacements. The modelling processes leave specific microstructural features on the bone surface, which can be used to infer the mechanisms shaping craniofacial traits in extinct and extant species. However, the analysis of bone surfaces from fossils and archaeological samples faces some difficulties related to the bone loss caused by taphonomic factors, and the lack of formal methods for estimating missing information and comparing the patterns of bone modelling among several specimens and samples. The present study provides a new approach for the quantitative analysis of bone formation and resorption patterns obtained from craniofacial surfaces. First, interpolation techniques were used to estimate missing data on high-resolution replicas of the left maxilla in a sample of sub-adult and adult modern humans and sub-adult fossil hominins. The performance of this approach was assessed by simulating variable amounts of missing data. Then, we applied measures of dispersion and central tendency to represent the variation and average pattern of bone modelling within samples. The spatial interpolation resulted in reliable estimations of the type of cell activity (deposition or resorption) in the missing areas, even when large extensions of the bone surface were lost. The quantification of the histological data allowed us to integrate the information of different specimens and depict the areas with higher and lower variation in the bone modelling pattern of the maxilla among specimens. Overall, the main advantages of the quantitative approach used here for generating bone modelling patterns are the high replicability and the possibility of incorporating variation among specimens into the comparisons among samples.
Collapse
Affiliation(s)
- Natalia Brachetta-Aporta
- División Antropología, Facultad de Ciencias Naturales y Museo, CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Paula N Gonzalez
- CONICET, Unidad Ejecutora-Estudios en Neurociencias y Sistemas Complejos, Florencio Varela, Argentina
| | - Valeria Bernal
- División Antropología, Facultad de Ciencias Naturales y Museo, CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
10
|
Martínez-Vargas J, Martinez-Maza C, Muñoz-Muñoz F, Medarde N, Lamrous H, López-Fuster MJ, Cubo J, Ventura J. Comparative postnatal histomorphogenesis of the mandible in wild and laboratory mice. Ann Anat 2017; 215:8-19. [PMID: 28935565 DOI: 10.1016/j.aanat.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/19/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
The coordinated activity of bone cells (i.e., osteoblasts and osteoclasts) during ontogeny underlies observed changes in bone growth rates (recorded in bone histology and bone microstructure) and bone remodeling patterns explaining the ontogenetic variation in bone size and shape. Histological cross-sections of the mandible in the C57BL/6J inbred mouse strain were recently examined in order to analyze the bone microstructure, as well as the directions and rates of bone growth according to the patterns of fluorescent labeling, with the aim of description of the early postnatal histomorphogenesis of this skeletal structure. Here we use the same approach to characterize the histomorphogenesis of the mandible in wild specimens of Mus musculus domesticus, from the second to the eighth week of postnatal life, for the first time. In addition, we assess the degree of similarity in this biological process between the wild specimens examined and the C57BL/6J laboratory strain. Bone microstructure data show that M. musculus domesticus and the C57BL/6J strain differ in the temporospatial pattern of histological maturation of the mandible, which particularly precludes the support of mandibular organization into the alveolar region and the ascending ramus modules at the histological level in M. musculus domesticus. The patterns of fluorescent labeling reveal that the mandible of the wild mice exhibits temporospatial differences in the remodeling pattern, as well as higher growth rates particularly after weaning, compared to the laboratory mice. Since the two mouse groups were reared under the same conditions, the dissimilarities found suggest the existence of differences between the groups in the genetic regulation of bone remodeling, probably as a result of their different genetic backgrounds. Despite the usual suitability of inbred mouse strains as model organisms, inferences from them to natural populations regarding bone growth should be made with caution.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Cayetana Martinez-Maza
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutiérrez Abascal 2, E-28006 Madrid, Spain.
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Nuria Medarde
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Hayat Lamrous
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut des Sciences de la Terre Paris (iSTeP), 4 place Jussieu, BC 19, F-75005 Paris, France.
| | - María José López-Fuster
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain.
| | - Jorge Cubo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut des Sciences de la Terre Paris (iSTeP), 4 place Jussieu, BC 19, F-75005 Paris, France.
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
11
|
Martínez-Vargas J, Muñoz-Muñoz F, Martinez-Maza C, Molinero A, Ventura J. Postnatal mandible growth in wild and laboratory mice: Differences revealed from bone remodeling patterns and geometric morphometrics. J Morphol 2017; 278:1058-1074. [DOI: 10.1002/jmor.20694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| | - Cayetana Martinez-Maza
- Departamento de Paleobiología; Museo Nacional de Ciencias Naturales (CSIC); C/José Gutiérrez Abascal 2 Madrid E-28006 Spain
| | - Amalia Molinero
- Institut de Neurociències and Departament de Biologia Cel·lular; de Fisiologia i d'Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| | - Jacint Ventura
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| |
Collapse
|
12
|
Bone Growth Dynamics of the Facial Skeleton and Mandible in Gorilla gorilla and Pan troglodytes. Evol Biol 2015. [DOI: 10.1007/s11692-015-9350-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Brachetta Aporta N, Martinez-Maza C, Gonzalez PN, Bernal V. Bone Modeling Patterns and Morphometric Craniofacial Variation in Individuals From Two Prehistoric Human Populations From Argentina. Anat Rec (Hoboken) 2014; 297:1829-38. [DOI: 10.1002/ar.22999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/24/2014] [Accepted: 06/03/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Natalia Brachetta Aporta
- División Antropología; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata; La Plata Argentina CONICET
- Consejo Interuniversitario Nacional (CIN); Argentina
| | - Cayetana Martinez-Maza
- Department of Paleobiology; Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2; 28006 Madrid Spain
| | - Paula N. Gonzalez
- División Antropología; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata; La Plata Argentina CONICET
- CONICET; Instituto de Genetica Veterinaria, Facultad de Ciencias Veterinarias; UNLP-CCT La Plata 1900 Argentina
| | - Valeria Bernal
- División Antropología; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata; La Plata Argentina CONICET
| |
Collapse
|
14
|
Martinez-Maza C, Rosas A, Nieto-Díaz M. Postnatal changes in the growth dynamics of the human face revealed from bone modelling patterns. J Anat 2013; 223:228-41. [PMID: 23819603 DOI: 10.1111/joa.12075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2013] [Indexed: 11/30/2022] Open
Abstract
Human skull morphology results from complex processes that involve the coordinated growth and interaction of its skeletal components to keep a functional and structural balance. Previous histological works have studied the growth of different craniofacial regions and their relationship to functional spaces in humans up to 14 years old. Nevertheless, how the growth dynamics of the facial skeleton and the mandible are related and how this relationship changes through the late ontogeny remain poorly understood. To approach these two questions, we have compared the bone modelling activities of the craniofacial skeleton from a sample of subadult and adult humans. In this study, we have established for the first time the bone modelling pattern of the face and the mandible from adult humans. Our analyses reveal a patchy distribution of the bone modelling fields (overemphasized by the presence of surface islands with no histological information) reflecting the complex growth dynamics associated to the individual morphology. Subadult and adult specimens show important differences in the bone modelling patterns of the anterior region of the facial skeleton and the posterior region of the mandible. These differences indicate developmental changes in the growth directions of the whole craniofacial complex, from a predominantly downward growth in subadults that turns to a forward growth observed in the adult craniofacial skeleton. We hypothesize that these ontogenetic changes would respond to the physiological and physical requirements to enlarge the oral and nasal cavities once maturation of the brain and the closure of the cranial sutures have taken place during craniofacial development.
Collapse
Affiliation(s)
- Cayetana Martinez-Maza
- Department of Paleobiology, Museo Nacional de Ciencias Naturales José Gutiérrez Abascal 2, Madrid, Spain.
| | | | | |
Collapse
|
15
|
Martinez-Maza C, Rosas A, García-Vargas S, Estalrrich A, de la Rasilla M. Bone remodelling in Neanderthal mandibles from the El Sidrón site (Asturias, Spain). Biol Lett 2011; 7:593-6. [PMID: 21307043 DOI: 10.1098/rsbl.2010.1188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skull morphology results from the bone remodelling mechanism that underlies the specific bone growth dynamics. Histological study of the bone surface from Neanderthal mandible specimens of El Sidrón (Spain) provides information about the distribution of the remodelling fields (bone remodelling patterns or BRP) indicative of the bone growth directions. In comparison with other primate species, BRP shows that Neanderthal mandibles from the El Sidrón (Spain) sample present a specific BRP. The interpretation of this map allows inferences concerning the growth directions that explain specific morphological traits of the Neanderthal mandible, such as its quadrangular shape and the posterior location of the mental foramen.
Collapse
|