1
|
Lukova A, Dunmore CJ, Tsegai ZJ, Bachmann S, Synek A, Skinner MM. Technical note: Does scan resolution or downsampling impact the analysis of trabecular bone architecture? AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25023. [PMID: 39237469 DOI: 10.1002/ajpa.25023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The "gold standard" for the assessment of trabecular bone structure is high-resolution micro-CT. In this technical note, we test the influence of initial scan resolution and post hoc downsampling on the quantitative and qualitative analysis of trabecular bone in a Gorilla tibia. We analyzed trabecular morphology in the right distal tibia of one Gorilla gorilla individual to investigate the impact of variation in voxel size on measured trabecular variables. For each version of the micro-CT volume, trabecular bone was segmented using the medical image analysis method. Holistic morphometric analysis was then used to analyze bone volume (BV/TV), anisotropy (DA), trabecular thickness (Tb.Th), spacing (Tb.Sp), and number (Tb.N). Increasing voxel size during initial scanning was found to have a strong impact on DA and Tb.Th measures, while BV/TV, Tb.Sp, and Tb.N were found to be less sensitive to variations in initial scan resolution. All tested parameters were not substantially influenced by downsampling up to 90 μm resolution. Color maps of BV/TV and DA also retained their distribution up to 90 μm. This study is the first to examine the effect of variation in micro-CT voxel size on the analysis of trabecular bone structure using whole epiphysis approaches. Our results indicate that microstructural variables may be measured for most trabecular parameters up to a voxel size of 90 μm for both scan and downsampled resolutions. Moreover, if only BV/TV, Tb.Sp or Tb.N is measured, even larger voxel sizes might be used without substantially affecting the results.
Collapse
Affiliation(s)
- Andrea Lukova
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
- Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christopher J Dunmore
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Zewdi J Tsegai
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Sebastian Bachmann
- Computatioal Biomechanics, Institute of Lightweight Design and Structural Biomechanics, Wien, Austria
| | - Alexander Synek
- Computatioal Biomechanics, Institute of Lightweight Design and Structural Biomechanics, Wien, Austria
| | - Matthew M Skinner
- Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Koneru MC, Harper CM. Comparing lateral plantar process trabecular structure to other regions of the human calcaneus. Anat Rec (Hoboken) 2024; 307:3152-3165. [PMID: 38357839 DOI: 10.1002/ar.25406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Investigating skeletal adaptations to bipedalism informs our understanding of form-function relationships. The calcaneus is an important skeletal element to study because it is a weight-bearing bone with a critical locomotor role. Although other calcaneal regions have been well studied, we lack a clear understanding of the functional role of the lateral plantar process (LPP). The LPP is a bony protuberance on the inferolateral portion of the calcaneus thought to aid the tuberosity in transmission of ground reaction forces during heel-strike. Here, we analyze LPP internal trabecular structure relative to other calcaneal regions to investigate its potential functional affinities. Human calcanei (n = 20) were micro-CT scanned, and weighted spherical harmonic analysis outputs were used to position 251 volumes of interest (VOI) within each bone. Trabecular thickness (Tb.Th), spacing (Tb.Sp), degree of anisotropy (DA), and bone volume fraction (BV/TV) were calculated for each VOI. Similarities in BV/TV and DA (p = 0.2741) between the LPP and inferior tuberosity support suggestions that the LPP is a weight-bearing structure that may transmit forces in a similar direction. The LPP significantly differs from the inferior tuberosity in Tb.Th and Tb.Sp (p < 0.05). Relatively thinner, more closely spaced trabeculae in the LPP may serve to increase internal surface area to compensate for its relatively small size compared to the tuberosity. Significant differences in all parameters between LPP and joint articular surfaces indicate that trabecular morphology is differently adapted for the transmission of forces associated with body mass through joints.
Collapse
Affiliation(s)
- Manisha C Koneru
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Christine M Harper
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| |
Collapse
|
3
|
Borges JS, Costa VC, Irie MS, de Rezende Barbosa GL, Spin-Neto R, Soares PBF. Definition of the Region of Interest for the Assessment of Alveolar Bone Repair Using Micro-computed Tomography. J Digit Imaging 2023; 36:356-364. [PMID: 36070014 PMCID: PMC9984626 DOI: 10.1007/s10278-022-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022] Open
Abstract
The objective of this study was to evaluate the influence of the extraction socket (distal or lingual root) and the type of region of interest (ROI) definition (manual or predefined) on the assessment of alveolar repair following tooth extraction using micro-computed tomography (micro-CT). The software package used for scanning, reconstruction, reorientation, and analysis of images (NRecon®, DataViewer®, CT-Analyzer®) was acquired through Bruker < https://www.bruker.com > . The sample comprised the micro-CT volumes of seven Wistar rat mandibles, in which the right first molar was extracted. The reconstructed images were analyzed using the extraction sockets, i.e., the distal and intermediate lingual root and the method of ROI definition: manual (MA), central round (CR), and peripheral round (PR). The bone volume fraction (BV/TV) values obtained were analyzed by two-way ANOVA with Tukey's post hoc test (α = 5%). The distal extraction socket resulted in significantly lower BV/TV values than the intermediate lingual socket for MA (P = 0.001), CR (P < 0.001), and PR (P < 0.001). Regarding the ROI, when evaluating the distal extraction socket, the BV/TV was significantly higher (P < 0.001) for MA than for CR and PR, with a lower BV/TV for CR. However, no significant difference was observed for MA (P = 0.855), CR (P = 0.769), or PR (P = 0.453) in the intermediate lingual extraction socket. The bone neoformation outcome (BV/TV) for alveolar bone repair after tooth extraction is significantly influenced by the ROI and the extraction socket. Using the predefined method with a standardized ROI in the central region of the distal extraction socket resulted in the assessment of bone volume, demonstrating the most critical region of the bone neoformation process.
Collapse
Affiliation(s)
- Juliana Simeão Borges
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Vitor Cardoso Costa
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Milena Suemi Irie
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | | | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Health, Aarhus University, Aarhus, Denmark
| | - Priscilla Barbosa Ferreira Soares
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
4
|
Ontogenetic Patterning of Human Subchondral Bone Microarchitecture in the Proximal Tibia. BIOLOGY 2022; 11:biology11071002. [PMID: 36101383 PMCID: PMC9312028 DOI: 10.3390/biology11071002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/11/2023]
Abstract
High-resolution computed tomography images were acquired for 31 proximal human tibiae, age 8 to 37.5 years, from Norris Farms #36 cemetery site (A.D. 1300). Morphometric analysis of subchondral cortical and trabecular bone architecture was performed between and within the tibial condyles. Kruskal−Wallis and Wilcoxon signed-rank tests were used to examine the association between region, age, body mass, and each morphometric parameter. The findings indicate that age-related changes in mechanical loading have varied effects on subchondral bone morphology. With age, trabecular microstructure increased in bone volume fraction (p = 0.033) and degree of anisotropy (p = 0.012), and decreased in connectivity density (p = 0.001). In the subchondral cortical plate, there was an increase in thickness (p < 0.001). When comparing condylar regions, only degree of anisotropy differed (p = 0.004) between the medial and lateral condyles. Trabeculae in the medial condyle were more anisotropic than in the lateral region. This research represents an innovative approach to quantifying both cortical and trabecular subchondral bone microarchitecture in archaeological remains.
Collapse
|
5
|
Webb NM. The Functional and Allometric Implications of Hipbone Trabecular Microarchitecture in a Sample of Eutherian and Metatherian Mammals. Evol Biol 2021. [DOI: 10.1007/s11692-021-09543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe pelvis plays an active role in weight bearing and countering the ground reaction forces incurred by the hindlimbs thus making it a critical component of the locomotor skeleton. Accordingly, this anatomical region is theoretically ideal for inferring locomotor behavior from both external skeletal morphology and trabecular microarchitecture, with the latter possibly offering nuanced insights into the mechanical loading environment given its increased plasticity and higher turnover rate. However, trabecular microarchitecture is also known to be influenced by a variety of factors including body size, sex, age, genetic regulation, diet and activity level, that collectively hinder the ability to generate consistent functional inferences. In this study, a comparative sample of mammals (42 species spanning four orders) of varying sizes, yet comparable locomotor repertoires, were evaluated to determine the effects of body size, phylogeny and locomotion on hipbone trabecular microarchitecture. This study found a weak functional signal detected in differences in bone volume fraction and the degree of anisotropy across certain pre-assigned locomotor categories, while confirming previously recognized allometric scaling trends reported for other mammalian samples based on the femur. Within primates, a more anisotropic pattern was observed for quadrupedal species attributed to their repetitive loading regimes and stereotypical limb excursions, while isotropic values were revealed for taxa utilizing more varied arboreal repertoires. Humans, despite a frequent and predictable loading environment associated with their use of bipedalism, showed relatively isotropic values. This study highlights the confounding factors that influence trabecular microarchitecture and consequently limit its utility as a method for investigating locomotor adaptation.
Collapse
|
6
|
Amson E, Bibi F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol 2021; 19:87. [PMID: 33926429 PMCID: PMC8086358 DOI: 10.1186/s12915-021-01016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammals are a highly diverse group, with body mass ranging from 2 g to 170 t, and encompassing species with terrestrial, aquatic, aerial, and subterranean lifestyles. The skeleton is involved in most aspects of vertebrate life history, but while previous macroevolutionary analyses have shown that structural, phylogenetic, and functional factors influence the gross morphology of skeletal elements, their inner structure has received comparatively little attention. Here we analysed bone structure of the humerus and mid-lumbar vertebrae across mammals and their correlations with different lifestyles and body size. RESULTS We acquired bone structure parameters in appendicular and axial elements (humerus and mid-lumbar vertebra) from 190 species across therian mammals (placentals + marsupials). Our sample captures all transitions to aerial, fully aquatic, and subterranean lifestyles in extant therian clades. We found that mammalian bone structure is highly disparate and we show that the investigated vertebral structure parameters mostly correlate with body size, but not lifestyle, while the opposite is true for humeral parameters. The latter also show a high degree of convergence among the clades that have acquired specialised (non-terrestrial) lifestyles. CONCLUSIONS In light of phylogenetic, size, and functional factors, the distribution of each investigated structural parameter reveals patterns explaining the construction of appendicular and axial skeletal elements in mammalian species spanning most of the extant diversity of the clade in terms of body size and lifestyle. These patterns should be further investigated with analyses focused on specific lifestyle transitions that would ideally include key fossils.
Collapse
Affiliation(s)
- Eli Amson
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany.
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany.
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
| |
Collapse
|
7
|
Veneziano A, Cazenave M, Alfieri F, Panetta D, Marchi D. Novel strategies for the characterization of cancellous bone morphology: Virtual isolation and analysis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:920-930. [PMID: 33811768 PMCID: PMC8359981 DOI: 10.1002/ajpa.24272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/03/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The advent of micro-computed tomography (μCT) made cancellous bone more accessible than ever before. Nevertheless, the characterization of cancellous bone is made difficult by its inherent complexity and the difficulties in defining homology across datasets. Here we propose novel virtual methodological approaches to overcome those issues and complement existing methods. MATERIALS AND METHODS We present a protocol for the isolation of the whole cancellous region within a μCT scanned bone. This method overcomes the subsampling issues and allows studying cancellous bone as a single unit. We test the protocol on a set of primate bones. In addition, we describe a set of morphological indices calculated on the topological skeleton of the cancellous bone: node density, node connectivity, trabecular angle, trabecular tortuosity, and fractal dimension. The usage of the indices is shown on a small comparative sample of primate femoral heads. RESULTS The isolation protocol proves reliable in isolating cancellous structures from several different bones, regardless of their shape. The indices seem to detect some functional differences, although further testing on comparative samples is needed to clarify their potential for the study of cancellous architecture. CONCLUSIONS The approaches presented overcome some of the difficulties of trabecular bone studies. The methods presented here represent an alternative or supporting method to the existing tools available to address the biomechanics of cancellous bone.
Collapse
Affiliation(s)
- Alessio Veneziano
- Synchrotron Radiation for Medical Physics (SYRMEP), Elettra-Sincrotrone Trieste S.C.p.A, Trieste, Italy
| | - Marine Cazenave
- Skeletal Biology Research Centre at the School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Fabio Alfieri
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Daniele Panetta
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Damiano Marchi
- Department of Biology, Università di Pisa, Pisa, Italy.,Evolutionary Studies Institute and Centre for Excellence in PalaeoSciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Cazenave M, Oettlé A, Pickering TR, Heaton JL, Nakatsukasa M, Francis Thackeray J, Hoffman J, Macchiarelli R. Trabecular organization of the proximal femur in Paranthropus robustus: Implications for the assessment of its hip joint loading conditions. J Hum Evol 2021; 153:102964. [PMID: 33713985 DOI: 10.1016/j.jhevol.2021.102964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Reconstruction of the locomotor repertoire of the australopiths (Australopithecus and Paranthropus) has progressively integrated information from the mechanosensitive internal structure of the appendicular skeleton. Recent investigations showed that the arrangement of the trabecular network at the femoral head center is biomechanically compatible with the pattern of cortical bone distribution across the neck, both suggesting a full commitment to bipedalism in australopiths, but associated with a slightly altered gait kinematics compared to Homo involving more lateral deviation of the body center of mass over the stance limb. To provide a global picture in Paranthropus robustus of the trabecular architecture of the proximal femur across the head, neck and greater trochanter compartments, we applied techniques of virtual imaging to the variably preserved Early Pleistocene specimens SK 82, SK 97, SK 3121, SKW 19 and SWT1/LB-2 from the cave site of Swartkrans, South Africa. We also assessed the coherence between the structural signals from the center of the head and those from the trabecular network of the inferolateral portion of the head and the inferior margin of the neck, sampling the so-called vertical bundle, which in humans represents the principal compressive system of the joint. Our analyses show a functionally related trabecular organization in Pa. robustus that closely resembles the extant human condition, but which also includes some specificities in local textural arrangement. The network of the inferolateral portion of the head shows a humanlike degree of anisotropy and a bone volume fraction intermediate between the extant human and the African ape patterns. These results suggest slight differences in gait kinematics between Pa. robustus and extant humans. The neck portion of the vertical bundle revealed a less biomechanically sensitive signal. Future investigations on the australopith hip joint loading environment should more carefully investigate the trabecular structure of the trochanteric region and possible structural covariation between cortical bone distribution across the neck and site-specific trabecular properties of the arcuate bundle.
Collapse
Affiliation(s)
- Marine Cazenave
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.
| | - Anna Oettlé
- Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Travis Rayne Pickering
- Department of Anthropology, University of Wisconsin, Madison, USA; Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, South Africa
| | - Jason L Heaton
- Department of Biology, Birmingham-Southern College, Birmingham, USA; Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History (Transvaal Museum), Pretoria, South Africa
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - J Francis Thackeray
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakobus Hoffman
- South African Nuclear Energy Corporation SOC Ltd., Pelindaba, South Africa
| | - Roberto Macchiarelli
- Département Homme & Environnement, UMR 7194 CNRS, Muséum national d'Histoire naturelle, 75116, Paris, France; Unité de Formation Géosciences, Université de Poitiers, Poitiers, France
| |
Collapse
|
9
|
DeMars LJD, Stephens NB, Saers JPP, Gordon A, Stock JT, Ryan TM. Using point clouds to investigate the relationship between trabecular bone phenotype and behavior: An example utilizing the human calcaneus. Am J Hum Biol 2020; 33:e23468. [PMID: 32790125 DOI: 10.1002/ajhb.23468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES The objective of this study is to demonstrate a new method for analyzing trabecular bone volume fraction and degree of anisotropy in three dimensions. METHODS We use a combination of automatic mesh registration, point-cloud correspondence registration, and P-value corrected univariate statistical tests to compare bone volume fraction and degree of anisotropy on a point by point basis across the entire calcaneus of two human groups with different subsistence strategies. RESULTS We found that the patterns of high and low bone volume fraction and degree of anisotropy distribution between the Black Earth (hunter-gatherers) and Norris Farms (mixed-strategy agriculturalists) are very similar, but differ in magnitude. The hunter-gatherers exhibit higher levels of bone volume fraction and less anisotropic trabecular bone organization. Additionally, patterns of bone volume fraction and degree of anisotropy in the calcaneus correspond well with biomechanical expectations of relative forces experienced during walking and running. CONCLUSIONS We conclude that comparing site-specific, localized differences in trabecular bone variables such as bone volume fraction and degree of anisotropy in three-dimensions is a powerful analytical tool. This method makes it possible to determine where similarities and differences between groups are located within the whole skeletal element of interest. The visualization of multiple variables also provides a way for researchers to see how the trabecular bone variables interact within the morphology, and allows for a more nuanced understanding of how they relate to one another and the broader mechanical environment.
Collapse
Affiliation(s)
- Lily J D DeMars
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jaap P P Saers
- Department of Archaeology, Cambridge University, Cambridge, UK
| | - Adam Gordon
- Department of Anthropology, University at Albany, SUNY, Albany, New York, USA
| | - Jay T Stock
- Department of Archaeology, Cambridge University, Cambridge, UK.,Department of Anthropology, Western University, London, Ontario, Canada
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
10
|
Mulder B, Stock JT, Saers JPP, Inskip SA, Cessford C, Robb JE. Intrapopulation variation in lower limb trabecular architecture. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:112-129. [DOI: 10.1002/ajpa.24058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Bram Mulder
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - Jay T. Stock
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
- Department of Anthropology University of Western Ontario London Canada
- Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany
| | - Jaap P. P. Saers
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - Sarah A. Inskip
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - Craig Cessford
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| | - John E. Robb
- University of Cambridge, McDonald Institute for Archaeological Research Cambridge UK
| |
Collapse
|
11
|
Terhune CE, Sylvester AD, Scott JE, Ravosa MJ. Internal architecture of the mandibular condyle of rabbits is related to dietary resistance during growth. J Exp Biol 2020; 223:jeb220988. [PMID: 32127379 DOI: 10.1242/jeb.220988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Although there is considerable evidence that bone responds to the loading environment in which it develops, few analyses have examined phenotypic plasticity or bone functional adaptation in the masticatory apparatus. Prior work suggests that masticatory morphology is sensitive to differences in food mechanical properties during development; however, the importance of the timing/duration of loading and variation in naturalistic diets is less clear. Here, we examined microstructural and macrostructural differences in the mandibular condyle in four groups of white rabbits (Oryctolagus cuniculus) raised for a year on diets that varied in mechanical properties and timing of the introduction of mechanically challenging foods, simulating seasonal variation in diet. We employed sliding semilandmarks to locate multiple volumes of interest deep to the mandibular condyle articular surface, and compared bone volume fraction, trabecular thickness and spacing, and condylar size/shape among experimental groups. The results reveal a shared pattern of bony architecture across the articular surface of all treatment groups, while also demonstrating significant among-group differences. Rabbits raised on mechanically challenging diets have significantly increased bone volume fraction relative to controls fed a less challenging diet. The post-weaning timing of the introduction of mechanically challenging foods also influences architectural properties, suggesting that bone plasticity can extend well into adulthood and that bony responses to changes in loading may be rapid. These findings demonstrate that bony architecture of the mandibular condyle in rabbits responds to variation in mechanical loading during an organism's lifetime and has the potential to track dietary variation within and among species.
Collapse
Affiliation(s)
- Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Matthew J Ravosa
- Departments of Biological Sciences, Aerospace & Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
12
|
Beresheim AC, Pfeiffer S, Grynpas M. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs. J Anat 2019; 236:448-462. [PMID: 31729033 DOI: 10.1111/joa.13116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
There is considerable variation in the gross morphology and tissue properties among the bones of human infants, children, adolescents, and adults. Using 18 known-age individuals (nfemale = 8, nmale = 9, nunknown = 1; birth to 21 years old), from a well-documented cemetery collection, Spitalfields Christ Church, London, UK, this study explores growth-related changes in cortical and trabecular bone microstructure. Micro-CT scans of mid-shaft middle thoracic ribs are used for quantitative analysis. Results are then compared to previously quantified conventional histomorphometry of the same sample. Total area (Tt.Ar), cortical area (Ct.Ar), cortical thickness (Ct.Th), and the major (Maj.Dm) and minor (Min.Dm) diameters of the rib demonstrate positive correlations with age. Pore density (Po.Dn) increases, but age-related changes to cortical porosity (Ct.Po) appear to be non-linear. Trabecular thickness (Tb.th) and trabecular separation (Tb.Sp) increase with age, whereas trabecular bone pattern factor (Tb.Pf), structural model index (SMI), and connectivity density (Conn.D) decrease with age. Sex-based differences were not identified for any of the variables included in this study. Some samples display clear evidence of diagenetic alteration without corresponding changes in radiopacity, which compromises the reliability of bone mineral density (BMD) data in the study of past populations. Cortical porosity data are not correlated with two-dimensional measures of osteon population density (OPD). This suggests that unfilled resorption spaces contribute more significantly to cortical porosity than do the Haversian canals of secondary osteons. Continued research using complementary imaging techniques and a wide array of histological variables will increase our understanding of age- and sex-specific ontogenetic patterns within and among human populations.
Collapse
Affiliation(s)
- Amy C Beresheim
- Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Susan Pfeiffer
- Department of Anthropology, University of Toronto, Toronto, ON, Canada.,Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA.,Department of Archaeology, University of Cape Town, Cape Town, South Africa
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Saers JP, Ryan TM, Stock JT. Trabecular bone structure scales allometrically in the foot of four human groups. J Hum Evol 2019; 135:102654. [DOI: 10.1016/j.jhevol.2019.102654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/26/2022]
|
14
|
Plasse M, Amson E, Bardin J, Grimal Q, Germain D. Trabecular architecture in the humeral metaphyses of non-avian reptiles (Crocodylia, Squamata and Testudines): Lifestyle, allometry and phylogeny. J Morphol 2019; 280:982-998. [PMID: 31090239 DOI: 10.1002/jmor.20996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
The lifestyle of extinct tetrapods is often difficult to assess when clear morphological adaptations such as swimming paddles are absent. According to the hypothesis of bone functional adaptation, the architecture of trabecular bone adapts sensitively to physiological loadings. Previous studies have already shown a clear relation between trabecular architecture and locomotor behavior, mainly in mammals and birds. However, a link between trabecular architecture and lifestyle has rarely been examined. Here, we analyzed trabecular architecture of different clades of reptiles characterized by a wide range of lifestyles (aquatic, amphibious, generalist terrestrial, fossorial, and climbing). Humeri of squamates, turtles, and crocodylians have been scanned with microcomputed tomography. We selected spherical volumes of interest centered in the proximal metaphyses and measured trabecular spacing, thickness and number, degree of anisotropy, average branch length, bone volume fraction, bone surface density, and connectivity density. Only bone volume fraction showed a significant phylogenetic signal and its significant difference between squamates and other reptiles could be linked to their physiologies. We found negative allometric relationships for trabecular thickness and spacing, positive allometries for connectivity density and trabecular number and no dependence with size for degree of anisotropy and bone volume fraction. The different lifestyles are well separated in the morphological space using linear discriminant analyses, but a cross-validation procedure indicated a limited predictive ability of the model. The trabecular bone anisotropy has shown a gradient in turtles and in squamates: higher values in amphibious than terrestrial taxa. These allometric scalings, previously emphasized in mammals and birds, seem to be valid for all amniotes. Discriminant analysis has offered, to some extent, a distinction of lifestyles, which however remains difficult to strictly discriminate. Trabecular architecture seems to be a promising tool to infer lifestyle of extinct tetrapods, especially those involved in the terrestrialization.
Collapse
Affiliation(s)
- Martial Plasse
- Muséum national d'Histoire naturelle, UMR 7207 - CR2P-CNRS-MNHN-Sorbonne Université, Paris, France.,INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France
| | - Eli Amson
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitatsforschung, Berlin, Germany
| | - Jérémie Bardin
- UMR 7207 - CR2P-CNRS-MNHN- Sorbonne Université, Université Pierre et Marie Curie, Paris Cedex 05, France
| | - Quentin Grimal
- INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France
| | - Damien Germain
- Muséum national d'Histoire naturelle, UMR 7207 - CR2P-CNRS-MNHN-Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Sukhdeo S, Parsons J, Niu XM, Ryan TM. Trabecular Bone Structure in the Distal Femur of Humans, Apes, and Baboons. Anat Rec (Hoboken) 2018; 303:129-149. [DOI: 10.1002/ar.24050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Simone Sukhdeo
- Department of AnthropologyPennsylvania State University University Park Pennsylvania
| | - Jacob Parsons
- Department of StatisticsPennsylvania State University University Park Pennsylvania
| | - Xiaoyue Maggie Niu
- Department of StatisticsPennsylvania State University University Park Pennsylvania
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State University University Park Pennsylvania
| |
Collapse
|
16
|
Saers JPP, Ryan TM, Stock JT. Trabecular bone functional adaptation and sexual dimorphism in the human foot. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:154-169. [DOI: 10.1002/ajpa.23732] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Jaap P. P. Saers
- Department of Archaeology, University of Cambridge McDonald Institute for Archaeological Research Cambridge United Kingdom
| | - Timothy M. Ryan
- Department of Anthropology Pennsylvania State University State College Pennsylvania
| | - Jay T. Stock
- Department of Archaeology, University of Cambridge McDonald Institute for Archaeological Research Cambridge United Kingdom
- Department of Anthropology University of Western Ontario London Ontario Canada
- Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany
| |
Collapse
|
17
|
Russo GA. Trabecular Bone Structural Variation in the Proximal Sacrum Among Primates. Anat Rec (Hoboken) 2018; 302:1354-1371. [PMID: 30315635 DOI: 10.1002/ar.23978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 11/09/2022]
Abstract
The sacrum occupies a functionally important anatomical position as part of the pelvic girdle and vertebral column. Sacral orientation and external morphology in modern humans are distinct from those in other primates and compatible with the demands of habitual bipedal locomotion. Among nonhuman primates, however, how sacral anatomy relates to positional behaviors is less clear. As an alternative to evaluation of the sacrum's external morphology, this study assesses if the sacrum's internal morphology (i.e., trabecular bone) differs among extant primates. The primary hypothesis tested is that trabecular bone parameters with established functional relevance will differ in the first sacral vertebra (S1) among extant primates that vary in positional behaviors. Results for analyses of individual variables demonstrate that bone volume fraction, degree of anisotropy, trabecular number, and size-corrected trabecular thickness differ among primates grouped by positional behaviors to some extent, but not always in ways consistent with functional expectations. When examined as a suite, these trabecular parameters distinguish obligate bipeds from other positional behavior groups; and, the latter three trabecular bone variables further distinguish knuckle-walking terrestrial quadrupeds from manual suspensor-brachiators, vertical clingers and leapers, and arboreal quadrupeds, as well as between arboreal and terrestrial quadrupeds. As in other regions of the skeleton in modern humans, trabecular bone in S1 exhibits distinctively low bone volume fraction. Results from this study of extant primate S1 trabecular bone structural variation provide a functional context for interpretations concerning the positional behaviors of extinct primates based on internal sacral morphology. Anat Rec, 302:1354-1371, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
18
|
Tsegai ZJ, Skinner MM, Pahr DH, Hublin JJ, Kivell TL. Ontogeny and variability of trabecular bone in the chimpanzee humerus, femur and tibia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:713-736. [DOI: 10.1002/ajpa.23696] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zewdi J. Tsegai
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Matthew M. Skinner
- Skeletal Biology Research Center; School of Anthropology and Conservation, University of Kent; Canterbury United Kingdom
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Dieter H. Pahr
- Institute for Lightweight Design and Structural Biomechanics; Vienna University of Technology; Wien Austria
| | - Jean-Jacques Hublin
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - Tracy L. Kivell
- Skeletal Biology Research Center; School of Anthropology and Conservation, University of Kent; Canterbury United Kingdom
- Department of Human Evolution; Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| |
Collapse
|
19
|
Kivell TL, Davenport R, Hublin JJ, Thackeray JF, Skinner MM. Trabecular architecture and joint loading of the proximal humerus in extant hominoids, Ateles, and Australopithecus africanus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:348-365. [PMID: 30129074 DOI: 10.1002/ajpa.23635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Several studies have investigated potential functional signals in the trabecular structure of the primate proximal humerus but with varied success. Here, we apply for the first time a "whole-epiphyses" approach to analysing trabecular bone in the humeral head with the aim of providing a more holistic interpretation of trabecular variation in relation to habitual locomotor or manipulative behaviors in several extant primates and Australopithecus africanus. MATERIALS AND METHODS We use a "whole-epiphysis" methodology in comparison to the traditional volume of interest (VOI) approach to investigate variation in trabecular structure and joint loading in the proximal humerus of extant hominoids, Ateles and A. africanus (StW 328). RESULTS There are important differences in the quantification of trabecular parameters using a "whole-epiphysis" versus a VOI-based approach. Variation in trabecular structure across knuckle-walking African apes, suspensory taxa, and modern humans was generally consistent with predictions of load magnitude and inferred joint posture during habitual behaviors. Higher relative trabecular bone volume and more isotropic trabeculae in StW 328 suggest A. africanus may have still used its forelimbs for arboreal locomotion. DISCUSSION A whole-epiphysis approach to analysing trabecular structure of the proximal humerus can help distinguish functional signals of joint loading across extant primates and can provide novel insight into habitual behaviors of fossil hominins.
Collapse
Affiliation(s)
- Tracy L Kivell
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Canterbury, United Kingdom.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Rebecca Davenport
- Department of Anthropology, University College London, London, United Kingdom
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - J Francis Thackeray
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Matthew M Skinner
- School of Anthropology and Conservation, Skeletal Biology Research Centre, University of Kent, Canterbury, United Kingdom.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Stephens NB, Kivell TL, Pahr DH, Hublin JJ, Skinner MM. Trabecular bone patterning across the human hand. J Hum Evol 2018; 123:1-23. [PMID: 30072187 DOI: 10.1016/j.jhevol.2018.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023]
Abstract
Hand bone morphology is regularly used to link particular hominin species with behaviors relevant to cognitive/technological progress. Debates about the functional significance of differing hominin hand bone morphologies tend to rely on establishing phylogenetic relationships and/or inferring behavior from epigenetic variation arising from mechanical loading and adaptive bone modeling. Most research focuses on variation in cortical bone structure, but additional information about hand function may be provided through the analysis of internal trabecular structure. While primate hand bone trabecular structure is known to vary in ways that are consistent with expected joint loading differences during manipulation and locomotion, no study exists that has documented this variation across the numerous bones of the hand. We quantify the trabecular structure in 22 bones of the human hand (early/extant modern Homo sapiens) and compare structural variation between two groups associated with post-agricultural/industrial (post-Neolithic) and foraging/hunter-gatherer (forager) subsistence strategies. We (1) establish trabecular bone volume fraction (BV/TV), modulus (E), degree of anisotropy (DA), mean trabecular thickness (Tb.Th) and spacing (Tb.Sp); (2) visualize the average distribution of site-specific BV/TV for each bone; and (3) examine if the variation in trabecular structure is consistent with expected joint loading differences among the regions of the hand and between the groups. Results indicate similar distributions of trabecular bone in both groups, with those of the forager sample presenting higher BV/TV, E, and lower DA, suggesting greater and more variable loading during manipulation. We find indications of higher loading along the ulnar side of the forager sample hand, with high site-specific BV/TV distributions among the carpals that are suggestive of high loading while the wrist moves through the 'dart-thrower's' motion. These results support the use of trabecular structure to infer behavior and have direct implications for refining our understanding of human hand evolution and fossil hominin hand use.
Collapse
Affiliation(s)
- Nicholas B Stephens
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Dieter H Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Matthew M Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Georgiou L, Kivell TL, Pahr DH, Skinner MM. Trabecular bone patterning in the hominoid distal femur. PeerJ 2018; 6:e5156. [PMID: 30002981 PMCID: PMC6035864 DOI: 10.7717/peerj.5156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In addition to external bone shape and cortical bone thickness and distribution, the distribution and orientation of internal trabecular bone across individuals and species has yielded important functional information on how bone adapts in response to load. In particular, trabecular bone analysis has played a key role in studies of human and nonhuman primate locomotion and has shown that species with different locomotor repertoires display distinct trabecular architecture in various regions of the skeleton. In this study, we analyse trabecular structure throughout the distal femur of extant hominoids and test for differences due to locomotor loading regime. METHODS Micro-computed tomography scans of Homo sapiens (n = 11), Pan troglodytes (n = 18), Gorilla gorilla (n = 14) and Pongo sp. (n = 7) were used to investigate trabecular structure throughout the distal epiphysis of the femur. We predicted that bone volume fraction (BV/TV) in the medial and lateral condyles in Homo would be distally concentrated and more anisotropic due to a habitual extended knee posture at the point of peak ground reaction force during bipedal locomotion, whereas great apes would show more posteriorly concentrated BV/TV and greater isotropy due to a flexed knee posture and more variable hindlimb use during locomotion. RESULTS Results indicate some significant differences between taxa, with the most prominent being higher BV/TV in the posterosuperior region of the condyles in Pan and higher BV/TV and anisotropy in the posteroinferior region in Homo. Furthermore, trabecular number, spacing and thickness differ significantly, mainly separating Gorilla from the other apes. DISCUSSION The trabecular architecture of the distal femur holds a functional signal linked to habitual behaviour; however, there was more similarity across taxa and greater intraspecific variability than expected. Specifically, there was a large degree of overlap in trabecular structure across the sample, and Homo was not as distinct as predicted. Nonetheless, this study offers a comparative sample of trabecular structure in the hominoid distal femur and can contribute to future studies of locomotion in extinct taxa.
Collapse
Affiliation(s)
- Leoni Georgiou
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
| | - Tracy L. Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dieter H. Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
- Department of Anatomy and Biomechanics, Karl Landsteiner Private University of Health Sciences, Krems an der Donau, Austria
| | - Matthew M. Skinner
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent at Canterbury, Canterbury, Kent, UK
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
22
|
Coiner-Collier S, Vogel ER, Scott RS. Trabecular Anisotropy in the Primate Mandibular Condyle Is Associated with Dietary Toughness. Anat Rec (Hoboken) 2018; 301:1342-1359. [DOI: 10.1002/ar.23810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | - Erin R. Vogel
- Department of Anthropology and Center for Human Evolutionary Studies; Rutgers, The State University of New Jersey; New Brunswick New Jersey
| | - Robert S. Scott
- Department of Anthropology and Center for Human Evolutionary Studies; Rutgers, The State University of New Jersey; New Brunswick New Jersey
| |
Collapse
|
23
|
Tsegai ZJ, Skinner MM, Pahr DH, Hublin J, Kivell TL. Systemic patterns of trabecular bone across the human and chimpanzee skeleton. J Anat 2018; 232:641-656. [PMID: 29344941 PMCID: PMC5835784 DOI: 10.1111/joa.12776] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Aspects of trabecular bone architecture are thought to reflect regional loading of the skeleton, and thus differ between primate taxa with different locomotor and postural modes. However, there are several systemic factors that affect bone structure that could contribute to, or be the primary factor determining, interspecific differences in bone structure. These systemic factors include differences in genetic regulation, sensitivity to loading, hormone levels, diet, and activity levels. Improved understanding of inter-/intraspecific variability, and variability across the skeleton of an individual, is required to interpret properly potential functional signals present within trabecular structure. Using a whole-region method of analysis, we investigated trabecular structure throughout the skeleton of humans and chimpanzees. Trabecular bone volume fraction (BV/TV), degree of anisotropy (DA) and trabecular thickness (Tb.Th) were quantified from high resolution micro-computed tomographic scans of the humeral and femoral head, third metacarpal and third metatarsal head, distal tibia, talus and first thoracic vertebra. We found that BV/TV is, in most anatomical sites, significantly higher in chimpanzees than in humans, suggesting a systemic difference in trabecular structure unrelated to local loading regime. Differences in BV/TV between the forelimb and hindlimb did not clearly reflect differences in locomotor loading in the study taxa. There were no clear systemic differences between the taxa in DA and, as such, this parameter might reflect function and relate to differences in joint loading. This systemic approach reveals both the pattern of variability across the skeleton and between taxa, and helps identify those features of trabecular structure that may relate to joint function.
Collapse
Affiliation(s)
- Zewdi J. Tsegai
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Matthew M. Skinner
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Skeletal Biology Research CentreSchool of Anthropology and ConservationUniversity of KentCanterburyUK
| | - Dieter H. Pahr
- Institute of Lightweight Design and Structural BiomechanicsVienna University of TechnologyViennaAustria
| | - Jean‐Jacques Hublin
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Tracy L. Kivell
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Skeletal Biology Research CentreSchool of Anthropology and ConservationUniversity of KentCanterburyUK
| |
Collapse
|
24
|
Colombo A, Hoogland M, Coqueugniot H, Dutour O, Waters-Rist A. Trabecular bone microarchitecture analysis, a way for an early detection of genetic dwarfism? Case study of a dwarf mother's offspring. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 20:65-71. [PMID: 29496218 DOI: 10.1016/j.ijpp.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
A 66 year-old woman with a disproportionate dwarfism and who bore seven children was discovered at the Middenbeemster archaeological site (The Netherlands). Three are perinates and show no macroscopic or radiological evidence for a FGFR3 mutation causing hypo-or achondroplasia. This mutation induces dysfunction of the growth cartilage, leading to abnormalities in the development of trabecular bone. Because the mutation is autosomal dominant, these perinates have a 50% risk of having been affected. This study determines whether trabecular bone microarchitecture (TBMA) analysis is useful for detecting genetic dwarfism. Proximal metaphyses of humeri were μCT-scanned with a resolution of 7-12 μm. Three volumes of interest were segmented from each bone with TIVMI© software. The TBMA was quantified in BoneJ© using six parameters on which a multivariate analysis was then performed. Two of the Middenbeemster perinates show a quantitatively different TBMA organization. These results and the family's medical history suggest a diagnosis of genetic dwarfism for this two perinates. This study provides evidence to support the efficacy of μCT for diagnosing early-stage bone disease.
Collapse
Affiliation(s)
- Antony Colombo
- École Pratique des Hautes Etudes, PSL Research University Paris, Chaire d'anthropologie biologique Paul Broca, France; UMR 5199 PACEA, University of Bordeaux, CNRS, MCC, LabEx Sciences archéologiques de Bordeaux, n°ANR-10-LABX-52, bât B8, allée Geoffroy Saint Hilaire, CS50023, F-33615 Pessac, France; Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6, D-04103 Leipzig, Germany.
| | - Menno Hoogland
- The University of Western Ontario, Department of Anthropology, N6A-3K7, London, Canada
| | - Hélène Coqueugniot
- École Pratique des Hautes Etudes, PSL Research University Paris, Chaire d'anthropologie biologique Paul Broca, France; UMR 5199 PACEA, University of Bordeaux, CNRS, MCC, LabEx Sciences archéologiques de Bordeaux, n°ANR-10-LABX-52, bât B8, allée Geoffroy Saint Hilaire, CS50023, F-33615 Pessac, France; Max Planck Institute for Evolutionary Anthropology, Department of Human Evolution, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Olivier Dutour
- École Pratique des Hautes Etudes, PSL Research University Paris, Chaire d'anthropologie biologique Paul Broca, France; UMR 5199 PACEA, University of Bordeaux, CNRS, MCC, LabEx Sciences archéologiques de Bordeaux, n°ANR-10-LABX-52, bât B8, allée Geoffroy Saint Hilaire, CS50023, F-33615 Pessac, France; The University of Western Ontario, Department of Anthropology, N6A-3K7, London, Canada
| | - Andrea Waters-Rist
- The University of Western Ontario, Department of Anthropology, N6A-3K7, London, Canada; Leiden University, Faculty of Archaeology, Laboratory for Human Osteoarchaeology, Postbus 9514, 2300RA, Leiden, The Netherlands
| |
Collapse
|
25
|
Barak MM, Black MA. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength. J Mech Behav Biomed Mater 2018; 78:455-464. [PMID: 29241149 PMCID: PMC5758409 DOI: 10.1016/j.jmbbm.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/24/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P < 0.01). Structural strength decreased from an average of 9.14 ± 2.85MPa to 6.97 ± 2.44MPa, while structural stiffness decreased from an average of 282.5 ± 63.4N/mm to 233.8 ± 51.2N/mm. This study demonstrates that 3D printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption.
Collapse
Affiliation(s)
- Meir Max Barak
- Department of Biology, Winthrop University, Rock Hill, SC 29733, USA.
| | | |
Collapse
|
26
|
Li C, Tan R, Guo Y, Li S. Using 3D finite element models verified the importance of callus material and microstructure in biomechanics restoration during bone defect repair. Comput Methods Biomech Biomed Engin 2018; 21:83-90. [PMID: 29359598 DOI: 10.1080/10255842.2018.1425404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chentian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rongwei Tan
- Research and Development Center, Shenzhen Lando Biomaterial Co.Ltd., Shenzhen, China
| | - Yuanjun Guo
- Research and Development Center, Shenzhen Lando Biomaterial Co.Ltd., Shenzhen, China
| | - Songjian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Barak MM, Sherratt E, Lieberman DE. Using principal trabecular orientation to differentiate joint loading orientation in the 3rd metacarpal heads of humans and chimpanzees. J Hum Evol 2017; 113:173-182. [DOI: 10.1016/j.jhevol.2017.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
28
|
Abstract
Micro-computed tomography can be applied for the assessment of the micro-architectural characteristics of the cortical and trabecular bones in either physiological or disease conditions. However, reports often lack a detailed description of the methodological steps used to analyse these images, such as the volumes of interest, the algorithms used for image filtration, the approach used for image segmentation, and the bone parameters quantified, thereby making it difficult to compare or reproduce the studies. This study addresses this critical need and aims to provide standardized assessment and consistent parameter reporting related to quantitative jawbone image analysis. Various regions of the rat jawbones were screened for their potential for standardized micro-computed tomography analysis. Furthermore, the volumes of interest that were anticipated to be most susceptible to bone structural changes in response to experimental interventions were defined. In the mandible, two volumes of interest were selected, namely, the condyle and the trabecular bone surrounding the three molars. In the maxilla, the maxillary tuberosity region and the inter-radicular septum of the second molar were considered as volumes of interest. The presented protocol provides a standardized and reproducible methodology for the analysis of relevant jawbone volumes of interest and is intended to ensure global, accurate, and consistent reporting of its morphometry. Furthermore, the proposed methodology has potential, as a variety of rodent animal models would benefit from its implementation.
Collapse
|
29
|
Tsegai ZJ, Skinner MM, Gee AH, Pahr DH, Treece GM, Hublin JJ, Kivell TL. Trabecular and cortical bone structure of the talus and distal tibia in Pan and Homo. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:784-805. [PMID: 28542704 DOI: 10.1002/ajpa.23249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Internal bone structure, both cortical and trabecular bone, remodels in response to loading and may provide important information regarding behavior. The foot is well suited to analysis of internal bone structure because it experiences the initial substrate reaction forces, due to its proximity to the substrate. Moreover, as humans and apes differ in loading of the foot, this region is relevant to questions concerning arboreal locomotion and bipedality in the hominoid fossil record. MATERIALS AND METHODS We apply a whole-bone/epiphysis approach to analyze trabecular and cortical bone in the distal tibia and talus of Pan troglodytes and Homo sapiens. We quantify bone volume fraction (BV/TV), degree of anisotropy (DA), trabecular thickness (Tb.Th), bone surface to volume ratio (BS/BV), and cortical thickness and investigate the distribution of BV/TV and cortical thickness throughout the bone/epiphysis. RESULTS We find that Pan has a greater BV/TV, a lower BS/BV and thicker cortices than Homo in both the talus and distal tibia. The trabecular structure of the talus is more divergent than the tibia, having thicker, less uniformly aligned trabeculae in Pan compared to Homo. Differences in dorsiflexion at the talocrural joint and in degree of mobility at the talonavicular joint are reflected in the distribution of cortical and trabecular bone. DISCUSSION Overall, quantified trabecular parameters represent overall differences in bone strength between the two species, however, DA may be directly related to joint loading. Cortical and trabecular bone distributions correlate with habitual joint positions adopted by each species, and thus have potential for interpreting joint position in fossil hominoids.
Collapse
Affiliation(s)
- Zewdi J Tsegai
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
| | - Andrew H Gee
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Dieter H Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Wien, Austria
| | - Graham M Treece
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tracy L Kivell
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
30
|
Sylvester AD, Terhune CE. Trabecular mapping: Leveraging geometric morphometrics for analyses of trabecular structure. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:553-569. [PMID: 28432829 DOI: 10.1002/ajpa.23231] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Trabecular microstructure of limb bone epiphyses has been used to elucidate the relationship between skeletal form and behavior among mammals. Such studies have often relied on the analysis of a single volume of interest (VOI). Here we present a method for evaluating variation in bone microstructure across articular surfaces by leveraging sliding semilandmarks. METHODS Two samples were used to demonstrate the proposed methodology and test the hypothesis that microstructural variables are homogeneously distributed: tali from two ape genera (Pan and Pongo, n = 9) and modern human distal femora (n = 10). Sliding semilandmarks were distributed across articular surfaces and used to locate the position of multiple VOIs immediately deep to the cortical shell. Trabecular bone properties were quantified using the BoneJ plugin for ImageJ. Nonparametric MANOVA tests were used to make group comparisons and differences were explored using principal components analysis and visualized using color maps. RESULTS Tests reveal that trabecular parameters are not distributed homogeneously and identify differences between chimpanzee and orangutan tali with regards to trabecular spacing and degree of anisotropy, with chimpanzee tali being more anisotropic and having more uniformly spaced trabeculae. Human males and females differed in the pattern of trabecular spacing with males having more uniform trabecular spacing across the joint surface. CONCLUSIONS The proposed procedure quantifies variation in trabecular bone parameters across joint surfaces and allows for meaningful statistical comparisons between groups of interest. Consequently it holds promise to help elucidate links between trabecular bone structure and animal behavior.
Collapse
Affiliation(s)
- Adam D Sylvester
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
31
|
Su A, Carlson KJ. Comparative analysis of trabecular bone structure and orientation in South African hominin tali. J Hum Evol 2017; 106:1-18. [PMID: 28434534 DOI: 10.1016/j.jhevol.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/28/2016] [Accepted: 12/31/2016] [Indexed: 11/26/2022]
Abstract
Tali of several hominin taxa are preserved in the fossil record and studies of the external morphology of these often show a mosaic of human-like and ape-like features. This has contributed to a growing recognition of variability characterizing locomotor kinematics of Australopithecus. In contrast, locomotor kinematics of another Plio-Pleistocene hominin, Paranthropus, are substantially less well-documented, in part, because of the paucity of postcranial fossils securely attributed to the genus. Since the talus transmits locomotor-based loads through the ankle and its internal structure is hypothesized to reflect accommodation to such loads, it is a cornerstone structure for reconstructing locomotor kinematics. Here we quantify and characterize trabecular bone morphology within tali attributed to Australopithecus africanus (StW 102, StW 363, StW 486) and Paranthropus robustus (TM 1517), making quantitative comparisons to modern humans, extant non-human apes, baboons, and a hominin talus attributed to Paranthropus boisei (KNM-ER 1464). Using high-resolution images of fossil tali (25 μm voxels), nine trabecular bone subregions of interest beneath the articular surface of the talar trochlea were segmented to quantify localized patterns in distribution and primary strut orientation. It was found that trabecular strut orientation and shape, in some cases, can discriminate amongst species characterized by different locomotor foot kinematics. Discriminant function analyses using standard trabecular bone structural properties align TM 1517 with Pan and Gorilla, while other hominin tali structurally most resemble those of baboons. In primary strut orientation, Paranthropus tali (KNM-ER 1464 and TM 1517) resemble the human condition in the anterior-medial subregion, where strut orientation appears positioned to distribute compressive loads medially and distally toward the talar head. In A. africanus tali (particularly StW 486), primary strut orientation in this region resembles that of apes. These results suggest that Paranthropus may have had a human-like medial weight shift during the last half of stance phase but Australopithecus did not.
Collapse
Affiliation(s)
- Anne Su
- School of Health Sciences, Cleveland State University, Cleveland, OH 44115, USA.
| | - Kristian J Carlson
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Evolutionary Studies Institute, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa
| |
Collapse
|
32
|
Bishop PJ, Clemente CJ, Hocknull SA, Barrett RS, Lloyd DG. The effects of cracks on the quantification of the cancellous bone fabric tensor in fossil and archaeological specimens: a simulation study. J Anat 2016; 230:461-470. [PMID: 27896808 DOI: 10.1111/joa.12569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 11/28/2022] Open
Abstract
Cancellous bone is very sensitive to its prevailing mechanical environment, and study of its architecture has previously aided interpretations of locomotor biomechanics in extinct animals or archaeological populations. However, quantification of architectural features may be compromised by poor preservation in fossil and archaeological specimens, such as post mortem cracking or fracturing. In this study, the effects of post mortem cracks on the quantification of cancellous bone fabric were investigated through the simulation of cracks in otherwise undamaged modern bone samples. The effect on both scalar (degree of fabric anisotropy, fabric elongation index) and vector (principal fabric directions) variables was assessed through comparing the results of architectural analyses of cracked vs. non-cracked samples. Error was found to decrease as the relative size of the crack decreased, and as the orientation of the crack approached the orientation of the primary fabric direction. However, even in the best-case scenario simulated, error remained substantial, with at least 18% of simulations showing a > 10% error when scalar variables were considered, and at least 6.7% of simulations showing a > 10° error when vector variables were considered. As a 10% (scalar) or 10° (vector) difference is probably too large for reliable interpretation of a fossil or archaeological specimen, these results suggest that cracks should be avoided if possible when analysing cancellous bone architecture in such specimens.
Collapse
Affiliation(s)
- Peter J Bishop
- Geosciences Program, Queensland Museum, Brisbane, Qld, Australia.,School of Allied Health Sciences, Griffith University, Southport, Qld, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Gold Coast, Qld, Australia
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Qld, Australia
| | - Scott A Hocknull
- Geosciences Program, Queensland Museum, Brisbane, Qld, Australia.,School of Allied Health Sciences, Griffith University, Southport, Qld, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Gold Coast, Qld, Australia
| | - Rod S Barrett
- School of Allied Health Sciences, Griffith University, Southport, Qld, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Gold Coast, Qld, Australia.,Gold Coast Orthopaedic Research and Education Alliance, Gold Coast, Qld, Australia
| | - David G Lloyd
- School of Allied Health Sciences, Griffith University, Southport, Qld, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Gold Coast, Qld, Australia.,Gold Coast Orthopaedic Research and Education Alliance, Gold Coast, Qld, Australia
| |
Collapse
|
33
|
Functional Morphology of the Primate Hand: Recent Approaches Using Biomedical Imaging, Computer Modeling, and Engineering Methods. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-3646-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
34
|
Gorissen BMC, Wolschrijn CF, van Vilsteren AAM, van Rietbergen B, van Weeren PR. Trabecular bone of precocials at birth; Are they prepared to run for the wolf(f)? J Morphol 2016; 277:948-56. [PMID: 27098190 PMCID: PMC5111789 DOI: 10.1002/jmor.20548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 03/20/2016] [Indexed: 02/02/2023]
Abstract
Bone is a dynamic tissue adapting to loading according to “Wolff's law of bone adaptation.” During very early life, however, such a mechanism may not be adequate enough to adapt to the dramatic change in environmental challenges in precocial species. Their neonates are required to stand and walk within hours after birth, in contrast to altricial animals that have much more time to adapt from the intrauterine environment to the outside world. In this study, trabecular bone parameters of the talus and sagittal ridge of the tibia from stillborn but full‐term precocials (calves and foals) were analyzed by micro‐CT imaging in order to identify possible anticipatory mechanisms to loading. Calculated average bone volume fraction in the Shetland pony (49–74%) was significantly higher compared to Warmblood foals (28–51%). Bovine trabecular bone was characterized by a low average bone volume fraction (22–28%), however, more directional anisotropy was found. It is concluded that anticipatory strategies in skeletal development exist in precocial species, which differ per species and are most likely related to anatomical differences in joint geometry and related loading patterns. The underlying regulatory mechanisms are still unknown, but they may be based on a genetic blueprint for the development of bone. More knowledge, both about a possible blueprint and its regulation, will be helpful in understanding developmental bone and joint diseases. J. Morphol. 277:948–956, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ben M C Gorissen
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claudia F Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anouk A M van Vilsteren
- Department of Animal Sciences, Human and Animal Physiology Division, Wageningen University, Wageningen, The Netherlands
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Orthopedic Biomechanics Division, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
35
|
Kivell TL. A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? J Anat 2016; 228:569-94. [PMID: 26879841 DOI: 10.1111/joa.12446] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past.
Collapse
Affiliation(s)
- Tracy L Kivell
- Animal Postcranial Evolution Laboratory, Skeletal Biological Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
36
|
Matarazzo SA. Trabecular architecture of the manual elements reflects locomotor patterns in primates. PLoS One 2015; 10:e0120436. [PMID: 25793781 PMCID: PMC4368714 DOI: 10.1371/journal.pone.0120436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
The morphology of trabecular bone has proven sensitive to loading patterns in the long bones and metacarpal heads of primates. It is expected that we should also see differences in the manual digits of primates that practice different methods of locomotion. Primate proximal and middle phalanges are load-bearing elements that are held in different postures and experience different mechanical strains during suspension, quadrupedalism, and knuckle walking. Micro CT scans of the middle phalanx, proximal phalanx and the metacarpal head of the third ray were used to examine the pattern of trabecular orientation in Pan, Gorilla, Pongo, Hylobates and Macaca. Several zones, i.e., the proximal ends of both phalanges and the metacarpal heads, were capable of distinguishing between knuckle-walking, quadrupedal, and suspensory primates. Orientation and shape seem to be the primary distinguishing factors but differences in bone volume, isotropy index, and degree of anisotropy were seen across included taxa. Suspensory primates show primarily proximodistal alignment in all zones, and quadrupeds more palmar-dorsal orientation in several zones. Knuckle walkers are characterized by having proximodistal alignment in the proximal ends of the phalanges and a palmar-dorsal alignment in the distal ends and metacarpal heads. These structural differences may be used to infer locmotor propensities of extinct primate taxa.
Collapse
Affiliation(s)
- Stacey A. Matarazzo
- Anthropology Department, University of Massachusetts at Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Schilling AM, Tofanelli S, Hublin JJ, Kivell TL. Trabecular bone structure in the primate wrist. J Morphol 2013; 275:572-85. [PMID: 24323904 DOI: 10.1002/jmor.20238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 11/08/2022]
Abstract
Trabecular (or cancellous) bone has been shown to respond to mechanical loading throughout ontogeny and thus can provide unique insight into skeletal function and locomotion in comparative studies of living and fossil mammalian morphology. Trabecular bone of the hand may be particularly functionally informative because the hand has more direct contact with the substrate compared with the remainder of the forelimb during locomotion in quadrupedal mammals. This study investigates the trabecular structure within the wrist across a sample of haplorhine primates that vary in locomotor behaviour (and thus hand use) and body size. High-resolution microtomographic scans were collected of the lunate, scaphoid, and capitate in 41 individuals and eight genera (Homo, Gorilla, Pan, Papio, Pongo, Symphalangus, Hylobates, and Ateles). We predicted that particular trabecular parameters would 1) vary across suspensory, quadrupedal, and bipedal primates based on differences in hand use and load, and 2) scale with carpal size following similar allometric patterns found previously in other skeletal elements across a larger sample of mammals and primates. Analyses of variance (trabecular parameters analysed separately) and principal component analyses (trabecular parameters analysed together) revealed no clear functional signal in the trabecular structure of any of the three wrist bones. Instead, there was a large degree of variation within suspensory and quadrupedal locomotor groups, as well as high intrageneric variation within some taxa, particularly Pongo and Gorilla. However, as predicted, Homo sapiens, which rarely use their hands for locomotion and weight support, were unique in showing lower relative bone volume (BV/TV) compared with all other taxa. Furthermore, parameters used to quantify trabecular structure within the wrist scale with size generally following similar allometric patterns found in trabeculae of other mammalian skeletal elements. We discuss the challenges associated with quantifying and interpreting trabecular bone within the wrist.
Collapse
|
38
|
Tsegai ZJ, Kivell TL, Gross T, Nguyen NH, Pahr DH, Smaers JB, Skinner MM. Trabecular bone structure correlates with hand posture and use in hominoids. PLoS One 2013; 8:e78781. [PMID: 24244359 PMCID: PMC3828321 DOI: 10.1371/journal.pone.0078781] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/22/2013] [Indexed: 11/19/2022] Open
Abstract
Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hominoids. Building upon traditional volume of interest-based analyses, we apply a whole-epiphysis analytical approach using high-resolution microtomographic scans of the hominoid third metacarpal to investigate whether trabecular structure reflects differences in hand posture and loading in knuckle-walking (Gorilla, Pan), suspensory (Pongo, Hylobates and Symphalangus) and manipulative (Homo) taxa. Additionally, a comparative phylogenetic method was used to analyse rates of evolutionary changes in trabecular parameters. Results demonstrate that trabecular bone volume distribution and regions of greatest stiffness (i.e., Young's modulus) correspond with predicted loading of the hand in each behavioural category. In suspensory and manipulative taxa, regions of high bone volume and greatest stiffness are concentrated on the palmar or distopalmar regions of the metacarpal head, whereas knuckle-walking taxa show greater bone volume and stiffness throughout the head, and particularly in the dorsal region; patterns that correspond with the highest predicted joint reaction forces. Trabecular structure in knuckle-walking taxa is characterised by high bone volume fraction and a high degree of anisotropy in contrast to the suspensory brachiators. Humans, in which the hand is used primarily for manipulation, have a low bone volume fraction and a variable degree of anisotropy. Finally, when trabecular parameters are mapped onto a molecular-based phylogeny, we show that the rates of change in trabecular structure vary across the hominoid clade. Our results support a link between inferred behaviour and trabecular structure in extant hominoids that can be informative for reconstructing behaviour in fossil primates.
Collapse
Affiliation(s)
- Zewdi J. Tsegai
- Department of Anthropology, University College London, London, United Kingdom
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tracy L. Kivell
- School of Anthropology and Conservation, The University of Kent, Canterbury, United Kingdom
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Thomas Gross
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - N. Huynh Nguyen
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dieter H. Pahr
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Jeroen B. Smaers
- Department of Anthropology, University College London, London, United Kingdom
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
| | - Matthew M. Skinner
- Department of Anthropology, University College London, London, United Kingdom
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
39
|
Sinclair KD, Farnsworth RW, Pham TX, Knight AN, Bloebaum RD, Skedros JG. The artiodactyl calcaneus as a potential ‘control bone’ cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck. J Hum Evol 2013; 64:366-79. [DOI: 10.1016/j.jhevol.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 12/08/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
40
|
Finite element micro-modelling of a human ankle bone reveals the importance of the trabecular network to mechanical performance: new methods for the generation and comparison of 3D models. J Biomech 2012; 46:200-5. [PMID: 23218138 DOI: 10.1016/j.jbiomech.2012.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/27/2012] [Accepted: 11/04/2012] [Indexed: 11/23/2022]
Abstract
Most modelling of whole bones does not incorporate trabecular geometry and treats bone as a solid non-porous structure. Some studies have modelled trabecular networks in isolation. One study has modelled the performance of whole human bones incorporating trabeculae, although this required considerable computer resources and purpose-written code. The difference between mechanical behaviour in models that incorporate trabecular geometry and non-porous models has not been explored. The ability to easily model trabecular networks may shed light on the mechanical consequences of bone loss in osteoporosis and remodelling after implant insertion. Here we present a Finite Element Analysis (FEA) of a human ankle bone that includes trabecular network geometry. We compare results from this model with results from non-porous models and introduce protocols achievable on desktop computers using widely available softwares. Our findings show that models including trabecular geometry are considerably stiffer than non-porous whole bone models wherein the non-cortical component has the same mass as the trabecular network, suggesting inclusion of trabecular geometry is desirable. We further present new methods for the construction and analysis of 3D models permitting: (1) construction of multi-property, non-porous models wherein cortical layer thickness can be manipulated; (2) maintenance of the same triangle network for the outer cortical bone surface in both 3D reconstruction and non-porous models allowing exact replication of load and restraint cases; and (3) creation of an internal landmark point grid allowing direct comparison between 3D FE Models (FEMs).
Collapse
|
41
|
Kivell TL, Skinner MM, Lazenby R, Hublin JJ. Methodological considerations for analyzing trabecular architecture: an example from the primate hand. J Anat 2011; 218:209-25. [PMID: 20977475 PMCID: PMC3042755 DOI: 10.1111/j.1469-7580.2010.01314.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 10/18/2022] Open
Abstract
Micro-computed tomographic analyses of trabecular bone architecture have been used to clarify the link between positional behavior and skeletal anatomy in primates. However, there are methodological decisions associated with quantifying and comparing trabecular anatomy across taxa that vary greatly in body size and morphology that can affect characterizations of trabecular architecture, such as choice of the volume of interest (VOI) size and location. The potential effects of these decisions may be amplified in small, irregular-shaped bones of the hands and feet that have more complex external morphology and more heterogeneous trabecular structure compared to, for example, the spherical epiphysis of the femoral head. In this study we investigate the effects of changes in VOI size and location on standard trabecular parameters in two bones of the hand, the capitate and third metacarpal, in a diverse sample of nonhuman primates that vary greatly in morphology, body mass and positional behavior. Results demonstrate that changes in VOI location and, to a lesser extent, changes in VOI size had a dramatic affect on many trabecular parameters, especially trabecular connectivity and structure (rods vs. plates), degree of anisotropy, and the primary orientation of the trabeculae. Although previous research has shown that some trabecular parameters are susceptible to slight variations in methodology (e.g. VOI location, scan resolution), this study provides a quantification of these effects in hand bones of a diverse sample of primates. An a priori understanding of the inherent biases created by the choice of VOI size and particularly location is critical to robust trabecular analysis and functional interpretation, especially in small bones with complex arthroses.
Collapse
Affiliation(s)
- Tracy L Kivell
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | |
Collapse
|